Specification of the SGCAL text formatter

by
Philip Hazel

CopyrightJ 2004 University of Cambridge Computing Service

New Museums Site
Pembroke Street
Cambridge CB2 3QH
United Kingdom

Edition 3.1
December 2004

1. Introduction
2. Basic SGCAL Concepts

2.1 What is text processing?

2.2 Specific and generic markup
2.3 Coding the markup in SGCAL
2.4 Special characters

2.5 SGCALs standard macros

3. SGCAL Input File Structure

3.1 Selecting a standard style
3.2 Special character flags
3.3 An example of SGCAL input

4. An Example of SGCAL Output

4.1 A short story
4.1.1 The plot thickens
4.1.2 The dilemma
4.1.3 Conclusion

5. SGCAL Markup for Running Text

5.1 Paragraphs
5.1.1 Characters that introduce flags
5.1.2 Font changes and underlining
5.1.3 Formatting paragraphs

5.2 Chapters, sections, subsections and sub-subsections

5.3 Indentation
5.3.1 Enumerated paragraphs
5.4 White space
5.5 Doublespaced output
5.6 Hyphenation
5.7 Horizontal lines

6. Notes, emphasis and indexing

6.1 Footnotes
6.2 Emphasis
6.3 Indexing

7. Displayed Text

7.1 In-line displays

7.2 Figures and tables

7.3 Subscripts and superscripts
7.4 Tabs

7.5 Heads and feet

8. Advanced Features

8.1 \Variables
8.2 Changing a standard style

Contents

8.2.1 Numbering chapters and sections

8.3 Display indentation
8.3.1 White space
8.3.2 Heading styles

Contents

©owo 0 Noogiortolr o1 -

10

8.4 Number formats
8.5 Varying heads and feet
8.6 Thin and wide spaces

9. Command line interface

9.1 A ‘normal’ command line
9.2 Handling forward references
9.3 Using alternate library files
9.4 Return codes from SGCAL

10. Overview of SGCAL processing

10.1 Input line format

10.2 Standard styles

10.3 Macros

10.4 Flags

10.5 Case sensitivity

10.6 The setup section

10.7 Empty lines

10.8 Tab characters in input
10.9 Processing of input lines
10.10 Special characters
10.11 Paragraph processing
10.12 Tab processing

10.13 Page processing
10.14 Galley-style output
10.15 Footnote processing

11. Types of output and dimensions
12. The SGCAL environment

13. Variables

14. Expressions

15. Standard styles

16. Standard macros

16.1 Aspic and endspic
16.2 At

16.3 Blank

16.4 Box

16.5 Chapter and chapenv
16.6 Chapternotes

16.7 Columns

16.8 Display and endd
16.9 Displayenv

16.10 Doublespace

16.11 Em and nem

16.12 Endnotes

16.13 Figure and endfigure
16.14 Footnote and endf
16.15 Footnoteenv

16.16 Nofoot

16.17 Numberpars, nextp and endp
16.18 Pagenumbers

16.19 Rule

16.20 Section and sectenv
16.21 Singlespace

Contents

23
23
24

27

27
28
28
29

30

30
30
30
31
31
31
31
31
31
33
34
34
34
35
35

36
37
38
39
41
42

42
42
42
42
42
43
43
43
43
44
44
44
44
44
45
45
45
46
46
46
46

16.22 Splitfootnotes

16.23 Subsection and subsectenv

16.24 Subsubsection and subsubsectenv
16.25 Table and endtable

16.26 Useaccents and usegreek

16.27 Usespecials

17. PostScript-only macros

17.1 Landscape

17.2 Picture, endpicture, and psinclude
17.3 Portrait

17.4 Transformfont

18. Standard flag strings
19. Standard variables
20. Basic flags

20.1 Absolute tab (abstab, $a)

20.2 Back ($B)

20.3 Draw Bezier curve (bezier, $bc)

20.4 Force capitals (caps, $caps)

20.5 Do not force capitals (endcaps, $nocaps)
20.6 Centre tab (centretab, $c)

20.7 Local centre tab (centreheretab, $C)

20.8 Character ($=)

20.9 Colour ($gb)

20.10 Discretionary hyphen (dhyphen, ~)
20.11 Down ($D)

20.12 End-of-line tab (endtab, $e)

20.13 Local right-aligning tab (endheretab, $E)
20.14 End underlining (endunderline, $pu)
20.15 Change font (font, $f)

20.16 Change font group (fontgroup, $9g)
20.17 Force output of font (forcefont fibf

20.18 Force hyphenation (forcehyphen, $fh)
20.19 Forward ($F)

20.20 Horizontal rule (hrule, $hr)

20.21 Hyphen (-)

20.22 Indent tab (indenttab, $i)

20.23 Variable insertion (insert, ~~)

20.24 Line joining (join, +++)

20.25 Level ($L)

20.26 Position marking (mark, $M)

20.27 Per-page footnote numbers (nextfnumber, $N)
20.28 Disabling hyphenation (nohyphen, $nh)
20.29 Non-splitting space (nosplitspace, $>)
20.30 Environment restore (pop, $pop)

20.31 Save environment (push, $push)

20.32 Output right-to-left (righttoleft, $rl)

20.33 Character quoting (quote, @)

20.34 Space insertion (space, $s, see also #)
20.35 Splittable non-stretchable space (splitspace, $S)
20.36 Extra-stretchy space (stretchspace, $<>)
20.37 Filled shapes (shapefill, $sf)

20.38 Sloping rule (srule, $sr)

20.39 Start underlining (startunderline, $su)

Contents

46
46
46
47
47
47

48

48

48

48
48

49
51
53

53
53
53
54
54
54
54
54
54
54
55
55
55
55
55
55
55
56
56
56
56
57
57
57
57
57
57
57
58
58
58
58
59
59
59
59
60
60
60

20.40 Tab ($t)

20.41 Thin space (thinspace, $<)

20.42 Up ($U)

20.43 Vertical rule (vrule, $vr)

21. Basic directives

iv

21.1 Aside

21.2 Backspace
21.3 Bindfont
21.4 Call

21.5 Cancelflag
21.6 Cancelmacro
21.7 Colseparation
21.8 Comment
21.9 Contiguous
21.10 Control
21.11 Cset

21.12 Cspace
21.13 Disable
21.14 Emphasis
21.15 Enable
21.16 Endsetup
21.17 Error

21.18 Flag

21.19 Font

21.20 Fontgroup
21.21 Foot

21.22 Footdepth
21.23 Footenv
21.24 Foottext
21.25 Format
21.26 Graphcolour
21.27 Graphgrey
21.28 Head
21.29 Headdepth
21.30 Headenv
21.311If

21.32 Include
21.33 Indent
21.34 Index
21.35 Inserttexts
21.36 Justify
21.37 Library
21.38 Linedepth
21.39 Linelength
21.40 Longcontrol
21.41 Looseness
21.42 Macro
21.43 Multicolumn
21.44 Newcolumn
21.45 Newline
21.46 Newpage
21.47 Newpar
21.48 Nosep
21.49 Page
21.50 Pagedepth

Contents

60
60
60
60

61

61
61
61
62
62
62
62
62
62
63
63
63
64
64
64
64
64
65
65
65
66
66
66
66
66
67
67
67
67
67
67
68
68
68
68
69
69
69
69
69
69
70
70
70
71
71
71
71
71
71

21.51 Pagerequest
21.52 Pagexdset
21.53 Pageydset
21.54 Parindent
21.55 Parspace
21.56 Pop

21.57 Push

21.58 Request
21.59 Rset

21.60 Resolution
21.61 Rulecolour
21.62 Ruledash
21.63 Rulegrey
21.64 Rulewidth
21.65 Savetexts
21.66 Set

21.67 Showhyphens
21.68 Space

21.69 Stop

21.70 HRbset

21.71 Bmpindent
21.72 Bmplinelength
21.73 Bxtcolour
21.74 Extgrey
21.75 Warning

22. System variables
23. Details of hyphenation
24. Miscellaneous

24.1 Kerning

24.2 Vertical spreading

24.3 Flag handling

24.4 Rules and other lines
24.5 Widow and orphan lines
24.6 Paragraph ends

25. Format of level 4 GCODE

25.1 General format

25.2 Coordinate system

25.3 Control sequences

25.4 Introductory control sequence

25.5 Control sequences withougaments

25.6 Control sequences withgaments

25.7 Control sequences before the first page
25.8 Control sequences on pages

25.9 Control and request strings

26. Font metric definitions

26.1 Font file format
26.2 Inline kerning and width data
26.3 Kerning and widths from an AFM file

27. The sgtops command
27.1 Control and request sequences in GCODE

Contents

71
71
72
72
72
72
72
72
73
73
73
73
73
73
73
73
74
74
74
74
74
75
75
75
75

76
78
79

79
79
79
79
79
79

80

80
80
80
80
81
81
81
82
83

85

85
86
87

91
92

\'

28. The sgpoint program and style

28.1 Building sgpoint

28.2 Running sgpoint

28.3 Control and request sequences in Gcode
28.4 The sgpoint style

29. The sgbuildhy and sghytest commands

29.1 The sgbuildhy command
29.2 The sghytest command

Vi Contents

94

94
94
94
95

98

98
98

1. Introduction

SGCAL is a text formatting program that is a direct descendent of the GCAL prograrwabat
originally written for anIBM mainframe around 1980. The current release should run on any
system with a standard C compiler. Howevire building apparatus that sipplied is aimed at
Unix-like systems.

SGCAL's input takes the form of a text file that contains markup describing how the text is to be
formatted. There are two forms of output:

« ‘Plain’ output isnormal ASCII text, suitable for viewing online using a text editorany
other means of file display

e ‘Fancy’ output encodesypeset pages in a format known as Gcode. This has turtieer
interpreted for display or printing.

An auxiliary program calledggtops is used to translate Gcode into PostScript. It is able to select
specific pages and perform certain transformations on them.

Another auxiliary program calleggpoint is used to display Gcode output on a laptop scrfeen
“slide” projection. A special style is provided toake it easy to define “pages” that are tloerect
size. The same input can be re-formatted as two-up pages for printing.

Plain output is obviously restricted to what can be represented as ASCII tikin \Wh SGCAL

source file, alternative input can be processed, depending on whether the output is plain. or fancy
For example, you can arrange that marked up strings of a certain type are displayed in italic in
fancy output, but put in quotes in plain output.

Line graphics are available directly in SGCAL input, but at a low level. An auxilppgram

called Aspic (distributed separately) can be called from within SGCAL to process a high level
graphics description language into the low level operations that SGCAL can interpret. This is useful
only for fancy output.

As it processes an input file, SGCAL can be requested to output index and table-of-content
information to an auxiliary file.

SGCAL makesa single pass over the input text. It cannot therefore handle forward references
directly. However it contains a mechanism for remembering the values of certain variable settings,
and re-using them on a second pass. A script catled-fr is provided for running SCCAL two

(or sometimes three) times, in order to resolve forward references.

As well assgcal, sgtops, andsgpoint, two further programs are provided as part of the SGCAL
distribution:

e sgbuildhy is a program for building the indexed hyphenation dictionary that is used by
SGCAL.

* sghytest is a program for testing hyphenation.
The rest of this document is divided into a number of parts.

Part | contains an introduction t8GCAL text processing. It explains the standard style ihat
provided in the SGCALlibrary, and introduces most of the basic facilities. Part Il contans
complete specification of SGCAL, but with little introductory material, and scant motivédion
the various facilities. Part lll contains specifications of the auxiliary progrsgteps, sgpoint,
sgbuildhy, andsghytest.

This document was constructed from a number of separate documents in September, 2003, when
the SGCAL source codevas arranged into a source distribution that could be built using the
conventional ‘configure’, ‘make’, ‘make install’ method. At that time, the documentation had not
been touched for about ten yealswas brought up-to-date as regards the current facildies
specification, but there was no serious overall re-editing, because of lack of time. This explains the
variations in style, and the lack of an index.

Introduction 1

Part |

Introduction to text processing with SGCAL

2. Basic SGCAL Concepts

2.1 What is text processing?

The termsword processing andtext processing are often confused. The former normally referato
system or program that permits the user to lay out text on a screen more or less in the form
which it is subsequently printed. The latter is a mareolved process in which the text of a
document (often called theopy) is entered into a computer system together with additional
information as to how it should be laid out and printed. A word processor or text editor can be used
to do this. The extra information mixed in with the copy is callednthekup, and it has the same
function asthe marks formerly added to a paper manuscript by a copy editor before sending it to be
typeset, in the days before ‘manuscripts’ were electronic. The mixture of copy and markup is read
by atext processing program, which formats the copy as requested and generates instructions for
the device on which it is to be printed or displayed.

While theadded complication imposed by a text processor may not always be approprsiterfor
documents, for longer ones there are several advantages. The device on which theprepatres

can be very much simpler than the ultimate printing device; a normal workstation can be used to
prepare text for the most sophisticated phototypesétteexample. Another advantage is that it is
easy to format the same input textdifferent ways or fodifferent output devices, providezre is

taken in the marking up.ekt processors alsofef facilities such as automatahapter sectionand
footnote numbering, floating inserts, creation of indexes and so on.

2.2 Specific and generic markup

Many text processors allow the user to include very specific instructions in the markup, for
example‘leave 12 points of white space and indent the next line by 24 points, which might be

used at the start of a paragraph.f@nt is a traditional unit of lengtlused in the printing industry;

it is approximately 1/72 of an inch.) Including susgtecific markup in an input file is not a good

idea becausé there is any need to change it for some reason, every occurrence in thedilee
sought out and changed.

The alternative is taise generic markup, which indicates the logical structure of the document
without specifying how this structure is to be represented on the page. For example, tloé start
each paragraph is indicated by a markup instrucstart of paragraph’, and the starbf a chapter

by ‘start next chapter with title such-and-such’.

Of course,the text processor has ultimately to be told wisttrt of paragraph’ actually means in

layout terms. This is done by a series of definitions that can either appear at the start of the input,
or in a separate file which is referenced from within the main input. Such a set of definitions
specifies alocument style. It is then easy to alter the layout parameters if the need arises, and, what
is perhaps more important, the style is guaranteed to be consistent throughout the document.

2.3 Coding the markup in SGCAL

Because the input to a text processor is a conventional file of characters that can be typed on a
keyboard, there has to be some way of distinguishing which characters are copy and which are
markup. In SGCAL there are two distinct forms of markup encoding:

» Directives are major instructions which always occupy an entire input line by themselves. The
line begins with a dot, followed by the name of the directive and possibly other information.
Some examples of SGCAL directives are

.display
.section Coding the markup in SGCAL
.index directives

Directive names are normally in lower case (small letters) — in SGCAL, uppeawcddewer
case letters are considered as distinct.

Basic SGCAL Concepts 5

e Flags are the other form of markup; they normalppear mixed up with the caopwnd
normally consist of a character that is neitlaedigit nor aletter, possibly followed by other
characters. Upper and lower case letters are distinct in flags as well as in directives, so, for
example,$f and'$F’ are two completely different flags.

Flags are used to encode instructions that apply to the immediately surrounding text (for
example, to change font) or to cause the insertion of a character that is not available on the
normal keyboard. Some examples of SGCAL flags are

$it{ to change to italic text
to insert an ‘exact space’, of fixed width
$alpha to insert a Greek alpha

When inputis being prepared for SGCAL it is important that the copy and the markup not be
confused. The typist must take special action if any line begins with a dot (which is not very likely)
or if any of the special characters that begin a flag appears in the Topget of such characters
can be changed by SGCAL directives, but the default set that is used with the standard styles is

~ tilde

underline

sharp sign, or ‘hash’
dollar

closing curly bracket

-~ & FI

If it is necessary to include one of these characters as part of theitceipguld be preceded by a
‘commercial at’ character (@). If you really want to print an ‘at’ charagten have to double it.
Thus:

for ~ type @~
for _ type @_
for # type @#
for $ type @$
for } type @}
for @type @@

The flagsequence@ is called theguote flag, andit can also be used to insert a dot at the start of a
line, should this ever be necessary

l

As well as these flag characters, thé ¢haracterhas special significance in that it is treated as a
possible hyphenation point. To prevent hyphenation in an individual instf@eesan be used.

2.4 Special characters

There is normally a distinction between opening and closing quotation marks in typographic fonts,
the normalcomputer ‘quote’ character producing a closing single quote. For an opening single
quote the character called ‘grave accent’ in the ASCII character set is used.

Double openingand closing quotes are obtained by typing two successive ‘grave accents’ or
‘guote’ characters respectively. Here is an example of some copy that uses this convention:

He said "I shall write to " The Times" tonight'.

Typographic fonts may also distinguish between a hyphen, an en-dash and an em-daslrevhich
all different lengths of short horizontal line. In SGCAL input, a singlecharacter is treated as a
hyphen, whileen-dashes and em-dashes are entered as two and three suceéssharacters
respectively For example,

An en-dash is used for ranges, such as
19--42, and a spaced en-dash is used -- as
here -- to set off parenthetical comments.
The use of an em-dash---without
spaces---for this purpose is going out of
fashion in the UK.

6 Basic SGCAL Concepts

2.5 SGCAL’s standard macros

The SGCAL program implements a number of basic text processing facilities, including a number
of particular directives and flags. It also provides means by which these basic facilities can be
combined into higher level operations. A directive which is built from more primitive operasgons
known as amacro directive, and a collection of macro definitions is calledmacro library.
Additional flags can also be defined.

SGCAL is intended to be used in conjunction with a mdtyary, and the use of ‘raw’ SGCAL
without any macro directives is exceptional. A standard library containing definitions for a standard
document style is part of the distribution. The directives and flags that are described in the
following sections include many that are in fact part of the standard library rather‘révan
SGCAL.

Basic SGCAL Concepts 7

3. SGCAL Input File Structure

An SGCAL input file is divided into two parts, the first of which is normally only a liews long.
This selects the styleor the document and possibly makes some changes to the staudismras.
The remainder of the input file consists of the marked up copy, as described in what follows.

3.1 Selecting a standard style

The first line of an SGCAL file normally consists ofibrary directive specifying the name difie
style, enclosed in quotes. For example:

Jibrary "a4ps"

selects the style that is designed for PostScript output on A4-peeer A style can alternatively
be specified as a parameter on the command that invokes SGCALsimbis line is all that is
needed in many cases.

Certain featuresof some styles can be varied by setting parameters before usingorthey
directive. For example, for th@dps anda5ps styles, the size of type and the typeface family can
be specified in this way. No other directives should normally appear befoaey.

3.2 Special character flags

A numberof standard flags are provided to give access to certain special characters that are not in
the normal ASCII character set. These standard flags, and the characters they repressnt, are
follows:

-> - right arrow

<-- ~ left arrow

<> - two-headed arrow
%) £ pound sterling
($E) € Euro

(c) 0 copyright sign
(TM) 0 trademark

$ ' feet (or minutes)
$. . bullet

An example of the use of these special characters is as follows:

Jibrary "a4ps"
6%’ of pipe cost ($)7.85.

SGCAL also contains support for letters from the Greek alph&hmtiever these are not available
by default, and it is necessary to obey the directive
.usegreek

to gain access to them. The names of the flags$aipha ’, ‘$beta ’, etc. for lower case letters,
and $Alpha ’, ‘$Beta ’, etc. for the capitals. Similarly, the directiuseaccents defines a set of
flags for printing accented characters. They have nameshieeite .

The more advanced user may wish at this point to include directives to vary the standard style, for
example to indent all the displays, or change the amount of white space preceding each section.
Some of the possibilities are described later in these introductory chapters. If this text is of any
length, it may be convenient to keep it in a separate file which is inserted into the main file by
means of thenclude directive, as for example

.include "header"

Theinclude directive can also be used to put together a single document from a number of separate
files.

8 SGCAL Input File Srructure

3.3 An example of SGCAL input

This is an example of a complete input file for SGCAL which illustrates the general style. The
markup items are described individually laterthis document. The output produced from this file
follows on the following page.

library "a4ps"

.chapter An Example of SGCAL Output

This is an example of the output produced by SGCAL
when it processes the input on the previous

page using the style definition ‘adps’.

.section A short story

Once upon a time there was a S$it{beautiful}
princess who often used to go for long walks by
herself in the woods near her castle.

.subsection The plot thickens

One day, while she was out walking, she was
confronted by a fierce

.display

$c $bf{D R A G O N}

.endd

which was spitting fire and flame.

.subsection The dilemma

Fortunately the princess had grown up in the
electronic age, and knew all

about dragons and other monsters.
.footnote

In her palace she had a huge collection

of home computers.

.endf

Should she

.numberpars

Zap it with her laser cannon?

.nextp

Lure it to the

bottomless pit just around the next corner?
.nextp

Utter the magic spell given to her by the
Great Binary Wizard?

.endp

.Subsection Conclusion

The dragon, seeing that it had met its match,
surrendered, and they both lived

happily ever after.

An SGCAL input file

SGCAL Input File Sructure 9

4. An Example of SGCAL Output

This is an example of the output produced by SGCAL when it processes the input on the previous
page using the style definition ‘a4ps’.

4.1 A short story

Once upon a time there wasbheautiful princess who often used to go for long walks by hergelf
the woods near her castle.

4.1.1 The plot thickens

One day, while she was out walking, she was confronted by a fierce
DRAGON

which was spitting fire and flame.

4.1.2 The dilemma

Fortunately the princess had grown up in the electronic age, and knew all about dragons and other
monsters. Should she

(1) Zapit with her laser cannon?
(2) Lureit to the bottomless pit just around the next corner?
(3) Utterthe magic spell given to her by the Great Binangahtl?

4.1.3 Conclusion
The dragon, seeing that it had met its match, surrendered, and they both lived happily ever after

1 In her palace she had a huge collection of home computers.

10 An Example of SGCAL Output

5. SGCAL Markup for Running ékxt

In a previous chapter the general form of SGCAL markup was described. In this chapter the
particular ‘marks’ relevant to sections of running text are defined and explained.

5.1 Paragraphs

Most paragraphs of running text can be typed verbatim. The only times when markup is
required are

* Whenone of the characters that SGCAL uses to introduce a flag is part of the copy;
* Whena character not in the normal printing set is encountered,;
* Whena change of font or underlining state is required,
* Whensome change from the normal spacing or line splitting rules is wanted.
5.1.1 Characters that introduce flags

These are the charactefs,” #, ‘~', *_’, ‘}’, and a full stop at the beginning of an input lirzaty
occurrences that are part of the copy must be precede@,ldgr' example:

... the @$20,000 question ...
Hyphens in the copy are taken as possible line-splitting places unless prece@d by
5.1.2 Font changes and underlining
The following standard flags are defined for changing font:

$rm{ to select the roman font

$it{ to select the italic font

$si to select the slanted roman font
$bf{ to select the bold font

$tt{ to select the typewriter font

$ssf to select the sanserif font

$scf to select the ‘small caps’ roman font

Whenever there is a change of font, the previous font is remembered on a stack, from where it can
be recalledby means of a flag consisting of a single closing curly bracket. An example of a
sentence that uses several fonts is

These words are $it{italic}, $bf{bold}, and roman.
Advanced users who make use of other fonts are recommended to create suitable mnemonic flags.

Sections of text to be underlined are bracketed byutiterline flag, which consists of a single
underline character. For example, the input

Here is an _underlined_ word.
produces as its output
Here is arunderlinedword.

SGCAL is very flexible in the way its flags are defined, and it is possible to change the naaning
any flag sequence. For example, if a document has been marked up with underlines, these can
changed to, sayitalic without changing the main input, by re-defining the meaning of the flag
sequence_’. In general itis best to mark up for the most sophisticated form of output thewes
likely to be used for the document, as itaasier to re-define the flags for a simpler output than
vice versa.

SGCAL Markup for Running Text 11

5.1.3 Formatting paragraphs

When SGCALIis formatting a paragraph it tries to fit as many words onto each output line as
possible. The length of input lines is of no account, nor is the number of spaces between input
words. For example, the input for the present paragraph could be as follows:

When SGCAL is formatting a paragraph

it tries to fit as many words onto

each output line as possible. The length of input
lines is of no account,

nor is the number of spaces between words.
For example, the input

for the present paragraph could be as follows:

Each line of a paragraph is stretched out to reach the right hand margin if SGCAL is operating with
both left and right justification enabled. The stretching is done by including extra spaces between
words. For output in which spaces are not significantly narrower than the printing characters (plain
output), the result isiot very pleasing. Right-justification can be turned on érabfany timeby
means of theustify directive. Right-justification is turned off by default for plain output styles.

It is occasionally necessary to tell SGCAL not to split a line at a particular place. Th&>flag
used to specify aon-splitting space, for example

The author’'s name is A.N.$>Other.

Such aspace canhowever be stretched ihecessaryAnother sort of space that behaves jiust a
printing character and neither stretches nor is a possible splitting point is cabgacagpace. It is
indicated by the flag#’.

A new paragraph is started whenever an empty input line onelvpar directive isencountered.
SGCAL reads the entire text of a paragraph before splitting it up into lines. The first lime of
paragraph is never placed at the bottom of a page, nor the last line at the top of a page, except in
the case of single-line paragraphs.

When a paragraph does not start at the top of a page, an amount of vertical space is output above it
such that the new paragraph is preceded by at least the amount specifieghdnysghee directive.

Style definition files normally select a default value appropriate to the output format, but this can be
changed any number of times. For example,

.parspace 36
specifies that, from now on, at least 36 points of space are to precede each paragraph.

A temporary indent is set for the first line of each paragraph. The size of this is controlled by the
parindent directive, andagain the style definition files select an appropriate default. It is also
possible to override the indent for one individual paragraph by means oémtipendent directive

(see below). Normal typographic convention is to asleer blank spaceor an indentto signify a

new paragraph, but not both.

If it is necessary to force a new line of output without treating it as a new paragraptevthee
directive canbe used. This can optionally be followed by the word ‘justify’, which requests that the
line just terminated be right-justified, that is, stretched out to end flush with the right-hagid. mar

5.2 Chapters, sections, subsections and sub-subsections

Paragraphs of text are usually grouped into larger units, and SGCAL has provision for up to four
different levels, not all of which need be used. For example, a novel may consist only of chapters,
whereas a technical note may be divided only into sections. The start of each portion of the text is
indicated by one of the following directives:

.Chapter < title>
.section < title>
.Subsection < title>
.Subsubsection < title>

12 SGCAL Markup for Running Text

For example

.chapter SGCAL Markup for Running Text
.section Paragraphs

The way in which the titles are printed is determined by the macros and flags in theestyikoon
file: For example, when formatting for ASCII output, chapter titles are printed in upper case, but on
a laser printer they are printed in large type. In both cases they are centred.

If a chapter orsection title starts with a double quote charadtes necessaryo includethe entire
title in double quotes, and to double up any double quote characters that are in it. For example:

.section """ Special™ features"

Titles can always be enclosed in double quotes, but they are mandatory only in this special case.

5.3 Indentation

Automatic indentation at the start of each paragraph is controlled bpatiedent directive, as
described above. Paragraph indents are relative to the overall indentation, which is set by the
indent directive. For example,

.indent 6 em

specifies an indentation of six ems in the current font, as has been done for this text. An
em is a traditional printés unit of horizontal width, approximately the size of a capital
‘M’. In SGCAL it is taken as the width of an exact space. Indents may also be specified in
points, inches, or centimetres:

.indent 36
.ndent 1in
.indent 2.54 cm

The paragraph indent as set [grindent is taken relative to the overall indent, and when there
is a positive indentation set, the paragraph indentation may be setn&gativevalue,
giving the effect demonstrated here. Other effects can be obtained by ustegpgbeary
indent facilities, of which the paragraph indent is really just a special case.

It is sometimes necessary to specify indents relative to the current indent. This can be done by
writing an arithmetic expression as part of thiedent directive, and using the text
‘~~gys.indent ' to represent the current indent. For example,

.indent ~~sys.indent + 24

This isan example of the use of the insert flag™to insert the value of an SGCAVariable into

the text. The name of this particular variablesys.indent. Variables whose names begin was.

are system variables, andtheir contents are automatically maintained by SGCAL. The contents of
sys.indent are defined to be the current indentation value, expressed in points.

The directive
tempindent< el>< e2>

where €1> and<e2> are arithmetic expressions, specifiesiradentation of value &> which lasts
for the next<e2> output lines. If €2> is omitted, the temporary indent lasts for one line oflgr
example, the directive

.tempindent 4 em 2
has been used here. In effect, the directive
.tempindent ~~sys.indent + ~~sys.parindent

is automatically inserted at the start of every paragraph. A subsequent egpijgibhdent directive
can override this, making

.newpar
tempindent< el>< e2>

SGCAL Markup for Running Text 13

have a completely different effect to

tempindent< el>< e2>
.newpar

in which thetempindent directive is cancelled by the subsequeatpar.

It is often necessarip place text in the indent space at the start of paragraphs. This can be done by
specifying a temporary indent of zero. Following the special text, the $iagis used to restore

the alignment. This is one of SGCAltab flags, more details of which are given in a lagaction;

it tabs to the current overall indent. An example of its use is as follows:

.indent 6 em
.tempindent O
(1)$i This is the start of a numbered paragraph.

5.3.1 Enumerated paragraphs

Three common cases of paragraph indentation have been ‘wrapped up’ into a macro command
which allows paragraphs to be numbered, lettered, or ‘bulleted’ with an arbitrary chaesgect-

ively. The directive numberpars indicates the start of a sequence of ‘numbered’ paragraphs,
indented relative to the current indent. Each subsequent paragraph must be marked by the directive
nextp, and the sequence is ended wattdp. If numberparsis usedon its own, the paragraplase
numbered with ordinary arabic numerals which are pldoegarentheses in the indent of the first

line of each paragraph. For example, the input

.numberpars

This is the first numbered paragraph. If

it is long enough to require more than one line,
they are all indented by the same amount.
.nextp

The is the second numbered paragraph.

.endp

produces the following output:

(1) Thisis the first numbered paragraph. If it is long enough to require more than one line, they
are all indented by the same amount.

(2) Thisis the second numbered paragraph.

Blank space is always left between the paragraphs, and there is additional space béisteatite
after the last. If roman numerals are required, one of the words ‘ROMAN’ or ‘roman’ can be added
to thenumber pars directive:

.numberpars roman

This gives lower case roman numerals; ‘ROMAN’ gives upper case ones. Simtlarbbtain
lettered rather than numbered paragraphs, nim@berpars directive is followed by ‘alpha’ or
‘ALPHA’. Finally, if an arbitrary character sequence follomsmberpars it is used tomark each
paragraph. For example

.numberpars *

marks each paragraph with an asterisk. Callsntionberpars can be nested, causing'‘inner’
paragraphs to be further indented, as shown in this example:

14 SGCAL Markup for Running Text

$bf{Check List for Monday, 10th June}
.blank

.numberpars

Check that

.numberpars *

Luggage contents are correctly listed;
.nextp

The luggage is labelled.

.endp

.nextp

Include a first-class stamped postcard.
.nextp

$bf{Arrival at school:}

.numberpars roman

Children should arrive at School between
8.30 and 8.45 am.

.nextp

If the coach is not already outside the gates,
luggage should be deposited outside the Craft Room.
.endp

.nextp

The coach will depart at 9.00 am.

.endp

The output produced is as follows:

Check List for Monday, 10th June
(1) Checkthat
* Luggagecontents are correctly listed;
* The luggage is labelled.
(2) Includea first-class stamped postcard.
(3) Arrival at school:
(i) Childrenshould arrive at School between 8.30 and 8.45 am.

(i) If the coachis not already outside the gates, luggage should be deposited ahtside
Craft Room.

(4) Thecoach will depart at 9.00 am.

Care must be taken to match eacimber pars with anendp, as otherwise strange effects occur

5.4 White space

There is a directive calleblank which can be followed by a number, and which leaves that many
units of vertical white space, unless SGCAL happens to be at the top of a page, in which case it
has no effect. If no number is given, a single unit of space is left. The size of the unit depends on
the stylebeing used (and can be varied); it is normally about two-thirds of the depth of a line.
There is a similar directive callegbace which leaves a fixed amount of white space, even at the
top of a page, and whose meaning cannot be varied. Examples of these two directives are

.blank
.blank 3
.space 2 in
.space 5cm

SGCAL Markup for Running Text 15

5.5 Doublespaced output

The directivesdoublespace and singlespace can be used to specify double and single spacing of
the outputrespectively Single spacing is the default. For many of the standard stjoe)espace
does not give literally double the spacing by default, as this often looks too deep.

5.6 Hyphenation

If a word contains a hyphen character, it is a candidate for splitting across a line break. There is
also aconditional hyphen flag, ‘~’. Its occurrence in a word indicates an allowable splittoint.

If the word is in fact split, a hyphen is inserted; if it is not, the word is closed up. Words may
contain any number of hyphens or conditional hyphens, for example

... photo~type~setter type-faces ...

To prevent a word from being split at a particular hypbbaracter precede it with the quote flag
‘@. For example:

Been there, done that, got the T@-shirt.

Words thatcontain neither real nor conditional hyphen characters may be split diceim®aks by
means ofSGCALs hyphenatiordictionary Hyphenation occurs only when the line ssficiently
‘loose’, thatis, when the amount of space in the line is large relative to the number of space
positions. To prevent automatic hyphenation, enclose the woshin{ * and } '. For example:

Do not split $nh{hyphenation}.

5.7 Horizontal lines

Printers call straight lines (whether horizontal or vertical) ‘rules’. SGCAL has flags for generating
both kinds of rule, though vertical rules are not supported for plain output. For the simpte#f aase
horizontal line right across the page, there is a directive called

16 SGCAL Markup for Running Text

6. Notes, emphasis and indexing

6.1 Footnotes

Footnotes are placed in the input text at the point they are referenced, and SGCAL automatically
supplies numbers for them. The numbers are reset at the start of each chapter. For fancy output
only, you can request that the numbers be reset for each page, provided there are no more than nine
footnotes per page, by including

.set perpagenotenumbers true

at the start of the input. The text of each footnote is enclosed between the dirémtiviee and
endf, as in the following example:

Footnotes are normally printed at the bottom
of each page

.footnote

Like this.

.endf

and separated from the text by a short line.

Footnotes are normally printed at the bottom of each page separated from the text by a short

line. The styles in which the reference numbers are printed, in the body of the text and at the start
of the note, are specified by flags which can be changed by the user. Details are given below in
section 8.2 Changing a standard style).

6.2 Emphasis

A particular form of marginal annotation commonly found in manuals and other documents that
undepgo revision is the ‘emphasis bar’, which is a short vertical line printed in the margin to
indicate where a document has been changed. SGCAL is set up so that any outmankaiesng
sections of the text appearing between the directtmesand nem are marked in this wayThis
paragraph is an example. For example,

.em
The line containing this text will be emphasized.
.nem

6.3 Indexing

The directiveindex causes the text that follows it on the same line, together with the page number
to be written to the index file. This must subsequently be sorted and consolidated by some means
before being reprocessed by SGCAL.

1 Like this.

Notes, emphasis and indexing 17

7. Displayed €xt

Display is a printets word for material that is not part of the running text of a document, but
instead is ‘displayed’ in some special fashion.

7.1 In-line displays

In SGCAL, displayed material that mube printed in sequence with the main texteisclosed
between the two directivedisplay and endd. When processing alisplay SGCAL does not
perform its normal line filling, but instead copies the input to the output, line for lireddition it
ensures that the display does not cross a page break.

At the start of a display the curretine length, indent, and so on are the same aghi:
immediately preceding text, but any changes that are made inside the displayt@retically
cancelled when it is completed. The font is automatically changed to a fixed pitch font, bearthis
be changed by the use @&frm{’, ‘$it{ ’, etc. At the end of a display the font reverts to what it
was previously. Here is an example of the input to generate a display:

display
1+2+3+4+5=15
.endd

By default, SGCAL flags are still interpreted in displayed material, so changes of font can still be
made and tabs (see below) can be used. However, it is sometimes useful to be able to disable this
processing, for example, when including text from other sources. A common caseirs|tisen

of computer program fragments, which often make use of the special characters that introduce
SGCAL flags. If the word ‘asis’ is added to tbesplay directive, the displayed text is nstanned

for embeddedlags. However, SGCAL directive lines are still recognized — thiseisessaryof

course, in order thandd should terminate the display. Here is an example that displays a fragment
of a BCPL program. Whout the use of ‘asis’, the'$’ and ‘#' characters would need to be
preceded by@.

.display asis
LET hypot(a, b) = VALOF
$(

LET hh = a#*a + b#*b
RESULTIS realsqrt(hh)
$)

.endd

It is sometimes desirable to allow very long displays to flow over page breaks. To do this, add the
word ‘flow’ to thedisplay directive:

.display flow
<many lines of input>
.endd

The first six lines of such a display always appear on the same page. If both ‘flow’ and ‘asis’ are
needed for a display, ‘asis’ must come second.

.display flow asis
<many lines of verbatim input>
.endd

Even thoughdisplayed material is copied line for line from input to output, it is possibtecoest

that individual lines be justified, that is, stretched out to end flush with the right-hand margin, by
increasing the sizes of the spaces in the line. Advdine directive with thejustify option achieves

this.

18 Displayed Text

7.2 Figures and tables

The form of display described above appearshia output at the same point as it appears in the
input. Forlarge amounts of display text it is sometimes more convenient to fisatiag display
which appearsiear but not necessarily at the point of input. Such displays are normally figures
with captions, and SGCAL has two directives for processing them which are used as in the
following example:

figure This is the figure’s title.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkk

The text for the figure, normally quite a few lines.

kkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkk

.endfigure

The output from this example appears as figure 1 below

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkhkkkkkkkkhkkkkkkkkk

The text for the figure, normally quite a few lines.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkhkkkkkkkkhkkkkkkkkk

Figure 1: Thisis the figure's title.

Notice that SGCAL has supplied a figure number automatically. The reference to thewagire
generated by including the following tebxfore the figure:

... appears as figure ~~figurenumber below.

This is an example of the use of the insert flag' ‘to insert the value of an SGCAlariable into
the text. The name of this particular variabléidgsirenumber.

The endfigure directive can be followed by a dimension. This specifies an amount of extra white
space that is to be left below the figure title.

If there is room on the current page for the figure, it is output immediad¢herwise it andany
subsequent figures are held over to the top of the next page (even if the subsequent figures would
in fact fit).

Another pair of SGCAL directives i&able and endtable. They work in exactly the same way as
figures, except that tables have their own sequence of numbers, held in the \tabbdslember.
The factthat a figure is being held over to the next page does not force tables to be héhdver
vice versa).

7.3 Subscripts and super scripts

Displayed material often requires the use of subscripts and superscripts. Three SGCAL flags are
available for this purpose:

(1) ‘$VU is the up flag, which causes subsequent text on the line to be raised with respect to what
went before;

(2) '$D is the down flag, which causes subsequent text on the line to be lowered with respect to
what went before;

(3) ‘$L’ is the level flag, which causes subsequent text on the line to be printed at the normal line
level.

The ability to print characters above and below the line is only available for fancy output.df one
the ASCII styles is being used, these flags have no effect. Here is a typical example of their use:

Displayed Text 19

display

H$D$$2$UO + SO$D$$3SL --> HED$$2USOD$$4
.blank 2

e = mcPU$$2

.endd

The output is
Hzo + SQ_‘;’ - H2504

e:m@

Note theuse of the null flag$$’ to terminate these flags when a digit follows. Thimecessary
because if a number follows the up or the down flag, it is taken as the number of points to move up
or down. If no number is present, the distance moved is one third of the current line depth.

7.4 Tabs

Several diferent kinds of tab are available in SGCAL. Timelent tab has already been described
above: it tabs to the current indentation position, and is represented by tt& flag *

A conventionaltab operation is represented by the flf’‘in the input. Tab positions are set by
the tabset directive, which is followed by a list of column widths. Here is an example of some
tabbing input:

display

.tabset 7em 11lem 7em 9em
1234567890123456789012345678901234567890
X Bt XX $t XXX $t XX $t X

.endd

The output that is produced is:

1234567890123456789012345678901234567890
X XX XXX XX X

Any space characters in the input preceding or following the tab flag are ignored. The tabs in the
example above areft tabs, becausthe portions of text are set with their left-hand edges at the tab
positions. SGCAL also suppontgght tabs anccentred tabs, and these are set in thbset directive

by typing the lettersR’ or ‘C’ following the tab position, respectivelylt is alsopermitted totype

‘L’ to indicate a left tab explicitly.) Here is an example showing all three kinds of tab:

display

tabset 7em 13em R 11em C 14em
12345678901234567890123456789012345678901234567890
X Bt XX $t XXXX $t XXX $t XX

.endd

which produces the following output:

12345678901234567890123456789012345678901234567890
X XX XXXX XXX XX

Finally, there are two special tabs that are useful in headings and footingenthieg tab andthe

ending tab, represented by the flag&c® and ‘$e’, respectively Any text following the ending tab

on the input line is moved to the right until it ends at tight-hand magin. Any text following the
centring tab, up to the next tab if present, or to the end of line if not, is centred in the current line
width. Thus the input

display
the left $¢ the middle $e the right
.endd

produces the following output line:

20 Displayed Text

the left the middle the right

7.5 Heads and feet

Headlines are lines that appear at the top of a page, above the main text, and sifodtihes

appear at the bottom. They are used for page numbers and titles of various sorts. The standard
arrangement in SGCAL is to have two footlines, the first being blank and the second containing a
centred line number, and no headlines.

The directivenofoot can be used to suppress the footlines altogefki&rnatively the size of the
headline or footline areas can be changed byhéseldepth and footdepth directives. Thusfor
example,

.headdepth 3 Id
.footdepth 4 Id

specifies threéheadlines and four footlines instead of the default zero and two. The abbreviation
‘Id" after a number stands for ‘line depths’. The material that appears in the headline area is defined
between the directivdsead andendhead, for example

.head

The $c First $e Headline
.newline

Another $e Headline
.endhead

and similarly footlines are defined betweéoot and endfoot. There may be more thaane
occurrence othese directives in an SGCAL input file; at the start or end of a page theeuest
definition is used. If there are not enough headlines to fill the headline area, the bottom is left
blank; if there are not enough footlines to fill the footline area the top is left blank.

The most common use of headlines and footlines is for printing the page number, and this can be
done in SGCAL by including the text+sys.pagenumber ' where the page number iequired.

Another useful system variable $gs.date, which can be used to insert the date of procedsitag
the text, as in the following example of footline definition:

.footdepth 3 1d

.foot

$c [~~sys.page] $e ~~sys.date
$bf{FIRST DRAFT}

.endfoot

It is possible, by using the more advanced features of SGCAL, to cause the page nurhbeers to
printed inroman numerals, to specify different headlines and footlines for odd-numberedend
numbered pages, and to create ‘running’ headlines and footlines.

Displayed Text 21

8. Advanced Features

The facilities described iprevious chapters are enough to cope with many text processing jobs.

There is,however a lot more to SGCAL. In this chapter some ways of changing the standard

actions described above whk covered, as well as some additional features. New users are advised
to become familiar with the preceding material before reading further

8.1 Variables

The directives for handling chapters, sections, footnotes and so on make uaeablfes for
counting. Many other featuresf the standard styles are controlled by variables. Additional vari-
ables can be defined and used for many purposes, some examples of which are given below. The
set directive is used to define a variable and its contents, which may be a number or @fstring
characters. One simple use of a variable is to hold a long string that appears many ttimes in
document, for example:

.set scal "supercalifragilisticexpialidocious”
This can then be inserted whenever required by simply typing
~~scal

wherever it is needed.

8.2 Changing a standard style

In this section some of the variables and flags which control the standard styles are described. The
may all be changed by the user in order to achieve a diffeffect.ef

8.2.1 Numbering chapters and sections
The variables which contain the current chapter, section, subsection and sub-subsection numbers are
calledchapter, section, subsection andsubsubsection. These can be used in several ways:

(1) If any of them is set to contain a negative number, the numbering of the relevant item is
suppressed. Thus

.set chapter -1

switches off chapter numbering, while leaving section, subsection and sub-subsection number-
ing on. It is sometimes useful to turn chapter numbeoifgfor a preface, then turn it on

again (by setting the variabthapter to zero) just before the call to tlohapter directive for
chapter 1.

(2) A long document can berocessed in parts by setting the appropriate chapter or section
number at the head of each patrt.

(3) A current number can be saved in a different variable for later use in a reference, oasutput
part of an index entry

8.3 Display indentation

Displays are automatically indentdy an amount specified by the variallisplayindent, which
defaults to zero. Thus to indent all displays by 36 points, the following directive would be used:

.set displayindent 36
The indent is always reset on exit from a display
8.3.1 White space

The amount of vertical white space surrounding headings can be controlled by chdreging
following variables:

22 Advanced Features

chapspaceb space after chapter headings

sspacea space before section headings
sspaceb space after section headings
ssspacea space before subsection headings
ssspaceb space after subsection headings
sssspacea space before sub-subsection headings
sssspaceb space after sub-subsection headings
fnspace space between footnotes

8.3.2 Heading styles
The styles in which headings appear (large type, bold face, etc.) are controlled by flags which are
placed before each heading text. They are:

$chead{ chapter heading
$shead{ section heading
$sshead{ subsection heading
$ssshead{ sub-subsection heading
$fkt{ footnote key in text
$fkn{ footnote key for note
S$ititlef figure title

Sttitlef table title

The heading texts are always terminated by a closing curly bracket. Before re-definingoese of
flags, it is first necessary to cancel it using ¢haecelflag directive. Thusfor example, to arrange
for section headings to be in sanserif type:

.cancelflag $shead{
flag $shead{ "$ss{"

The variablehnspace contains a string to be inserted between the number of a chapter, section or
subsection and its title. By default this string is a single space, but it can be changed as required.

8.4 Number formats

Page, chaptersectionand subsection numbers are normally printed in arabic numerals. Roman
numerals can be requested by means ofdhmat directive, which is followed by the name tbie
relevant variable and one of the words ‘roman’ or ‘ROMAN’ for lower or upper case numerals,
respectively The page number is held insgstem variable called sys.pagenumber, becauset is
incremented automatically inside the SGCAL program. For example,

.format chapter ROMAN
.format sys.pagenumber roman

would number chapters in uppercase roman numerals, and pages in lower case. For numbers in the
range 126, an alphabetic format is also available, again in either case, specified by the letters
‘alpha’ or ‘ALPHA' in a format directive.

8.5 Varying heads and feet

Two common requirements for headlines and footlines are the inclusion of the current chapter or
section title, and varying the text on alternate pages. The first of these can easily be done by
making use of the variablehapname, sectname and ssectname, which are automatically main-

tained by SGCAL. The second requires the useSGICALs conditional directivejf. This is a
powerful facility which can be used to test many conditions; the simple requirement heress to
whether the current page number is odd or even. Its use is best demonstrateekbynple, which

places the current chapter title on the left at the top of even-numbered (left hand) pagé® and
current section title at the top of odd-numbered pages. In both cases the titles are forced to be in
the sanserif typeface.

Advanced Features 23

.head

.if even ~~sys.page
$ss{~~chapname}
.else
$ePss{~~sectname}
fi

.endhead

The two parts of the conditional construction are separateclésy and the whole thing is
terminated byfi. Nested conditions are permitted.

When a new chapter or section is being started, SGCAL sets the name variable to the null string
until the title has been output. The above example would therefore result in a null headline at the
start of a chapter and whenever a section started at the top of a page (which is normally what is
wanted).

8.6 Thin and wide spaces

The thin space flag$<’, can be used to generate a small amount of horizontal space, witlita
approximately one sixth of a normal space (except of course for ASCII output, which does not have
variable spaces)There is also an ‘extra-stretchy’ space fl&s>’, which has the width of an
ordinary space, but which, if it appears in a line that is being right-justified, absorbs all the stretch,
leaving theother spaces unaltered. This can be used to force text to the right hand sidpaijehe

at the end of a paragraphs, as follows:

This is the text of the paragraph.
The quick brown fox jumps over the lazy dog.
Use the extra-stretchy space at the end,$<>thus.

The output produced is:

This is the text of the paragraph. The quick brown fox jumps over the lazy dog. Usxtthe
stretchy space at the end, thus.

24 Advanced Features

Part Il

Full specification of SGCAL

9. Command line interface

The sgcal command line has a number of options that fall into three categories:
* ‘Normal’ options that are used for the most common used of the program;
« Two special options that are concerned with handling forward references;
* Someadditional options that allow alternate library files to be used.

9.1 A ‘normal’ command line
The syntax for the most common calls to SGCAL is as follows:

sgcal [-to < file>]
[-style< style(s)>]
[Findex < file>]
[-aside < file>]
[-define < name>[=< value>] ...]
[-id | -help]
[-verbose]
[[-from] < file(s)>]

The keywordsstyle, -index, -aside, -define, and-verbose may be abbreviated to their firlgtters,
and-o is a synonym forto.

Up to nine input file names, separated by spaces, can be given. They are read in ordemésno
are given, the standard input is read. If no output file is given, there are two possibilities:

« If no input is given, the output is written to the standard output.

« Otherwisethe nameof the first input file is used to construct the name of an output file. Any
existing suffix is removed from the input file name, and thegout ’ is added.

The -style keyword can be used to supply the name of a standard style, for example
sgcal myfile -style online

Has the same effect as the line
Jibrary "online"

at the beginning of the first input file. In fact, up to nine file names can be given witdytlee
keyword, enabling auxiliary style definition files also to be specified by this means. For example:

sgcal myfile -style a4ps psgreek

The -define keyword can be used to cause named SGCAL variables to be set at the start of
processing. If no value is given for a variable, it is set to ‘true’. The keyword can be followed by
up to nine variable settings, separated by spaces. If fewer than nine are given, and the name of an
input file follows, the-from keyword is required to indicate that it is not another variable setting.

An alternative is to specify the input file first, as in the example below

Setting variables on the command line can be useful when parameterizing an input file so that its
output depends on which variables are set. For example:

sgcal myfile -define local nofigures

The -index and -aside keywords both define additional output files. For details of the data that is
written to these files, see the descriptions ofititex andaside directives in chapter 21. &hings

are issued if either of the index or aside files are missing when they are required, but SGCAL
continues processing.

The -id option causes SGCAL to output its version number and exit;i#é@ option causes it to
output a summary of the command line options.

Command line interface 27

The -verbose option requests SGCAL to output, to the standard error file, comments &brthe
‘Page €>' as it starts to process each page. If the verification output is displayed on a terminal
(the default case) this makes it possible to monitor the progress of a long SGCAL run.

9.2 Handling forward references

If your input file contains forward references, you will need to run SGCAL twice so that they can
be resolvedAny variable setting in the source that is referenced earlier than its definition must be
set using therset directive, insteadof the ordinaryset. (See sections 21.59 and 21.66 for the
specification of these directives.)

For the first pass, SGCAL must be called with theetout option, followed by the name of a
scratch file. For example:

sgcal -rsetout /tmp/sgtemp myfile.sgcal

The values of theset variables arewritten to the scratch file, and no errors are generated for
references to unset variables.

For the second pass, SGCAL must be called with-thetin option, referencing the same scratch
file. This reads the previously saved definitions at the start, so that the forward references can now
be correctly substituted.

In some cases, inserting the value of a forward reference may change the page layout of the
document, and this may affect the value of subsequent forward reference variables. The way to
handle this is to supply bothsetin and-rsetout for the second pass, and check for any changes.

All this housekeeping for forward references is handled for you if you callsgbal-fr script
instead ofsgcal. Its parameters are the same as for a ‘normal’ SGCAL call; it handles all the
-rsetin and -rsetout stuff automatically, using scratch files iwvar/tmp. The sgcal-fr command

runs SGCAL up to three times:

» If the scratch file is empty after the first pass, it implies there weresatovariables. A
second pass is not needed, so the script exits.

» After the second pass, the new values ofrtbet variables are compared with the oldliey
are the same, the script exits.

* Otherwise,a third pass isdone. If there is a discrepancy this time in the variable values,
sgcal-fr gives up.

sgcal-fr requires the input to be a file dites, so that they can be read multiple times. It doats
work for the standard input.

9.3 Using alternate library files

Options areprovided for changing the locations of various data files that SGCAL usesiethelt
location for these files is compiled into the binary. The default location is likely to be under
/usr/local; below we show the default paths when the overall ‘prefix’ is /ustlocal. You only

need these options if you want to use versions of the files that are different from thosegathese
are built in to SGCAL.

» -afmlib specifies thedirectory in which AFM files may be foundur/local/share/sgcal/
AFM/). These are files that specify the widthscharacters in a font in an Adobe standard
format. For the 36 standard PostScript fonts, SGCAL has character width data in its own
format in its own ‘font library’. For other fonts, you need to put an indirection into the
SGCAL font library to make it search for an AFM file. See chapter 26 for details.

* -hyphendata specifies the file that contains SGCéLindexed hyphenation dictionary
(/usr/local/share/sgcal/HyphenData).

« -enclib specifies the directory in which font encodings for files whose width data is obtained
from AFM files is found fusr/local/share/sgcal/Encoding).

28 Command line interface

» -fontlib specifies the directory in which SGCALfont information directory is found
(/usr/local/share/sgcal/).

e -library specifies the directory in which SGCALs library files can be found
(/usr/local/share/sgcal/).

Except for-hyphendata, which names a single file, all these options name directories, afadttin
they may list anumber of directories, separated by spaces or colons. When looking for a particular
file, each directory is searched in turn, from left to right.

9.4 Return codes from SGCAL
SGCAL issues the following return codes:

0 Success

4 Warnings only

8 Seriouserrors
12 Morethan 40 serious errors; run abandoned
16 Internaldisaster; run abandoned

The multiples of four are a historical relic from the IBM mainframe days.

Command line interface 29

10. Overview of SGCAL processing

This chapter contains information about the general format of SGCAL input files anthbgware
processed. Details of particular directives and flag sequences are given in later chapters.

10.1 Input line format

Input to SGCAL consists of a mixture of text to be processed raadtup, that is, additional
information that tells SGCAL how the document is to be formatted. Input files are considered line
by line. There are two kinds of linglirective lines and text lines. Directive lines are those that
begin with thedirective flag, which consists of a single full stop. For example,

Jibrary "a4ps"

is a directive line. Such lines contain large scale instructions to SGCAL; they are fosed,
example, to start a new chapter, begin a footnote, or change the indentation.

All lines that are not directive lines (i.e. do not begin with a full stop) are text lines. They contain
the text which is to be formatted, possibly interspersed with mé&tiagg whoseform is described
in section 10.4.

10.2 Standard styles

The SGCAL program itself provides a basic set of facilities for formatting paragraphs andlpages.
does not contain directives for laying out ‘higher level’ objects such as sections and cltaytérs.
features are provided by a setséndard styles which exist the the SGCAL librant is assumed

in most of this document that a standard style is in Hsgever users are free to create thewn
styles, possibly by modifying one of the standard ones, if the facilities provided arfeciesuf

10.3 Macros

A macro is a sequence of SGCAL input lines that has been encapsulated and given a name. This
name can then be used as if it were one of SGEALilt-in directives. For example, if a macro
calledmymacro has been defined to contain the lines

The quick brown fox jumps over the lazy dog.
Pack my box with five dozen liquor jugs.

then whenever SGCAL encounters an input line of the form
.mymacro

it behaves exactly as it would if this line were replaced by the two lines above. Macros can be
defined witharguments, which can cause variations to be made to the text each time the macro is
called. Macros are heavily used in the definitions of the standard styles. Details of the macro
facility are given in section 21.42.

A macro can be given the same name as one of SGCBasic directives, in which case it
overrides the directivddowever the basic directive can still be accessed by following the leading
dot with a percent sign. Thus, for example,

.newline

obeys a macro callediewline if one exists; otherwise it obeys the basiewline directive.
However,

.%%newline
always obeys the basiewline directive.
The processing of macros (and included filesee section 21.32 and 21.37) happahsnearly
stage, and the main part of the SGCAL program processes a single sequential strgarnliokes.

30 Overview of SGCAL processing

10.4 Flags

Flags are particular sequences of characters which are recognized in lines of input and which cause
some speciahction, such as the insertion of the contents of a variable, or a change of font. For
example, using the standard styles, the character sbitfig causes subsequent text to printed in

italic, until the charactey is reached.

Most of the flag strings can be defined to suit the 'sseste. The flags can be consideredhiee
types, depending on the time at which they are recognized:

* Thejoin flag isrecognized only at the end of a line just read from an input file. It causes the
next external line to be joined on as though it were part of the current line.

* Theinsert flag is recognized when scanning a line for inserted variables. This hatopkoth
directive and text lines.

* All other flags are recognized in text lines only
Details of particular flags are given in chapter Bas(c flags).

10.5 Case sensitivity

SGCAL input is case-sensitive. All names of directives and flags must be entered in the correct
case. In practice, all the basic directives have lower case names, as do all the mabeos in
standard styles. The set of standard flag strings, however, makes use of both lower and upper case.

10.6 The setup section

The stream of input lines presentedSGCAL is in two parts: an initiadetup section, followedby

the main portion. The setup section must contain all the font bindings and the setting of page
offsets (if required). These manpt occur later in the input. The setup section is terminated by the
occurrence of the first non-blank text line, or the directadsetup. It consists, therefore, of any
number of directive lines, possibly interspersed with blank lines.

10.7 Empty lines
Within the setup section, empty input lines are ignoéhin the main part of the text, empty
input lines are converted to directive lines of the form

.newpar

This normally results in the start of a new paragraph, but the user may define a macro called
newpar to specify different or additional action.

10.8 Tab charactersin input

Tab characters in input lines are expanded into an appropriate number of dpmeeters,
assuming a tab stop every eight characters. This is done to accommodate text editors that insert tabs
into files. Note that tab characters dat cause SGCALto perform tabbing operations, whichust

be notated using the various tab flags (see sections 20.1, 20.6, 20.7, 20.12, 20.22ar0.40,
21.70).

10.9 Processing of input lines

SGCAL processes its input sequentially, substituting the lines of a macro definition whenever a
macro call is encountered. The sequence of events is:

(1) Thenext input line is obtained from the current input file or current macro, as appropriate.

(2) If input is from a file, the line is examined to see if it ends with the join flag (default string
+++). If it does, the next line is read and joined on to it (the join flag being remaied,
course). This operation is repeatechécessaryThe maximum total input line length 024
characters. Longer input lines are arbitrarily split, and a warning message is output.

Overview of SGCAL processing 31

If input is from a macro, the join processing is not carried out. However, the join flag can be
used in macro definitions, as it will be processed when the macro is first read in.

(3) Thestart of the line is examined to see whether it begins with the directive flag &oip)l
and it is thereby classified as a directive lineadext line. If it is a directive line in which the
initial full stop is followed by a space characteo further processing is done on the line at
all. This provides a means of inserting comments into SGCAL input files.

(4) If the lineis a genuine directive line, it is scanned for insertions. An insertisacisgnized
when an instance of the insert flag (default strrg is immediately followed by a letter @r
digit. The appropriate system or user variable is inserted into the line, as described in chapter
13 (Variables). To prevent recognition of the insert flag in a directive line, it can be preceded
by the quote flag (whose default is the single chara@ter

After a directive line has been processed for insertions, the name of the direciteased.

If the directive flag at the start of the line is followed by a percent character, the name that
follows is taken as the name of a basic, built-in directive. Otherwise, if the imamediately
follows the directive flag without an intervening percent charaetsearch is first madfr a

macro directiveof that name, and only if that fails is the name interpreted as ads=ttive

name.

Because directivéines are scanned for insertions before the name of the directive is extracted,
it is possible for an insertion to change the name of a directive. It is also possible for an
insertion to cause a space to appear immediately after the directive flag, thus turning the
directive line into a comment, which is then not processed further (though all insertitwes in

line are done before this check is applied).

If the directive is a macro directive, SGCAL arranges for the lines that make up the macro
body tobe processed next. Otherwise, if the directive is one of the built-in basic directives,
the appropriate action is taken. Details of the individual basic directives are givarapA

ter 21.

Note that flags other than the insert and quote flags are never recognized in directive lines.

(5) Whena macro directive is obeyed, the remainder of the line following the name is read as a
series ofarguments for the macro. Dierent macros have dérent numbers of guments. A
space charactein the line separates different arguments, unless the text for a particular
argument is enclosed in double quotékwever when the final argument of the macro is
reached, the entire remainder of the line is assigned to it, whether or not it is enclosed in
quotes.

(6) If the line is a text line, it is firstly scanned for insertions, exactly as a directive line.ifThen
is re-scanned for occurrences of any other flag sequences (thus a flag sequence is recognized
in insertedtext). Finally it is added to the buffer in which the current paragraph is being built.

The above description applies to the majority of input lines, but there are some directives which
cause the lines which follow them to be processed in a different manner

The if directive can be used to cause portions of the text to be skipped, and not included in the
output. The lines in the skipped portion are not normally processed at all, but if a macro directive is
encountered in these lines, it is expanded into its constituent lines (except in one special case,
described below). This makes it possible to define macro pairs which includeonigiéional
directivesif, else, €lif, andfi within their bodies.

The special case where a macraa expanded while skipping lines is when the macro is already
active. This makes it possible to write recursive macros, that is, macros which call themselves,
either directly or indirectly

The aside, call, and longcontrol directives causea number of following lines to be processed
specially Inserts and macro expansions are applied to these lines, but no other processing is done.

32 Overview of SGCAL processing

10.10 Special characters

The character flag (seesection 20.8) provides a means of entering up to 256 different text
characters. The effect of printing any character on an output device is dependent on the device
itself. The common characters (letters, digits, punctuation) normally followstheencoding, and

are the same on most devices.

PostScript printers are special, in that their standard fonts contain characters which do not have a
default encoding, and the user may specify which codes correspond to which charactepgr-on a
font basis, changing the default encoding if necessary

SGCAL, in combination withsgtops, usesthe standard PostScript encoding for thabaracters
which do have standard codes. For text fonts that use the standard encoding, the following
additional codes are defined:

0 A Aacute 1 A Acircumflex
2 A Adieresis 3 A Agrave

4 A Aring 5 A Atilde

6 C Ccedila 7 E Eacute

8 E Ecircumflex 9 E Edieresis
10 E Egrave 11 | lacute

12 1 Icircumflex 13 | Idieresis
14 1 Igrave 15 N Ntilde

16 O Oacute 17 O Ocircumflex
18 O Odieresis 19 O Ograve
20 O otilde 21 S Scaron
22 U Uacute 23 U Ucircumflex
24 U Udieresis 25 U Ugrave
26 Y VYdieresis 27 7 Zcaron
28 Y Yacute 29 Db Eth

30 b Thorn 31 ™ trademark
128 & aacute 129 & acircumflex
130 & adieresis 131 a agrave
132 & aring 133 a atilde
134 ¢ ccedilla 135 é eacute
136 & ecircumflex 137 & edieresis
138 €& egrave 139 i iacute
140 1 icircumflex 141 7 idieresis
142 1 igrave 143 A ntilde
144 6 oacute 145 6 ocircumflex
146 6 odieresis 147 6 ograve
148 0O otilde 149 § scaron
150 G uacute 151 O ucircumflex
152 0 udieresis 153 u ugrave
154 y ydieresis 155 z zcaron
156 y yacute 157 8 eth
158 p thorn 159 © copyright
160 € Euro
209 Y% onequarter 210 ¥ onehalf
211 ¥ threequarters 212, brokenbar
213 ' onesuperior 214 2 twosuperior
215 3 threesuperior 216 - logicalnot
217 £ plusminus 218 - minus
219 =+ divide 220 x multiply
221 ° degree 222 4 mu
223 ® registered

SGCAL andsgtops also make some additional encoding definitions for the ZapfDingbats PostScript
font. The following are added:

Overview of SGCAL processing 33

0 0O az205 1 0O a206 2 [0 a5

3 [0 a86 4 [0 a87 5 [0 a88

6 0O a89 7 0O a90 8 0O a9

9 0O a92 10 0O a93 1 0O a%
12 0O a9% 13 0O a9%%

10.11 Paragraph processing

SGCAL collects the text of an entire paragraph in store before splitting it up into lines and
allocating those lines to a page. The end of a paragraph is indicated by one of the directives
newline, newpar, newcolumn, newpage, space, cspace, or multicolumn, or by a change irthe

line filling state, or by reaching the end of the input.

SGCAL does not normally generate paragraphs where the final line contains only a single word,
unless the word is wider than 18 points.

When SGCAL is not filling lines, that is, when each line of input corresponds to one line of output,
the behaviour is as if there werenawline directive immediately before each text line. (Note that
this is not the same asrewline directive after each text line- it means that theosep directive

can be used when filling is disabled.)

There are two parameters which control the way in which paragraphs are allocated totlpages;
are calledminparB and minparT. When a paragraph is complete, SGCAL checks to see whether
there is enough room on the page for the entire paragraph, or amiepatB lines. If not, it starts

a new page.

If SGCAL can fit only part of the paragraph on the current page, it checks the number of lines that
will be printed onthe following page. If this is less thaminparT lines, thenone line less is printed

at the bottom of the first page. If this would result in fewer timamparB lines appearing on the

first page, then the entire paragraph is printed at the start of the second page.

The default values fominparB and minpar T are both 2, and there is currently no way of changing
them. Thismeans that, provided paragraphs are longer than one line, neither ‘widow’ nor ‘orphan’
lines are generated. Vertical page stretching (see below) can often smooth out the appearance of
pages where one line has been moved forward to improve the appearance of the following page.

The way paragraphs are handled means that certain variables are effectively updated only after a
paragraph isomplete. For example, the varialsies.pagenumber contains the number ahe page

on which the previous paragraph ended. If its contents are inserted into the middle of a paragraph,
this may or may not be the number of the page on which it is printed. vBn&ble
sys.usedonpage, which measures how much of a page has been used, is similarly only updated at
the end of a paragraph.

Certain directives are synchronized with the text in a paragraph. For example, the directives for
changing theindentation and line length can be included in the middle of a paragraph, and they
will take effect at the start of the next output line following the point at which they appeear
directives arenot so synchronised; changing the line depth in the middle of a paradaaph,
example, affects the whole paragraph.

10.12 Tab processing

The processing of tabs (as specified by SGCAL flags, not by tab characters in the idplayési

until SGCAL is splitting up a paragraph into lines. The tab positions are therefore relative to the
output lines being generated. For indenting, absolute, centring, and line-ending tabs, SGCAL wiill
start a new output line if necessary

10.13 Page processing

SGCAL collects together alihe lines for a page (more strigtlfor a singlecolumn on a page)
before outputting any of them. This allows it to stretch the page vertically by slightly increasing the
line spacing, which improves the appearantgages that arenaginally shorter than the defined
depth.

34 Overview of SGCAL processing

10.14 Galley-style output

SGCAL does not support a true galley mode because it is designed to do formattimmoe:lay-
page basis, and this does not fit will with the idea of a galley mode. Howavapproximation
can be achieved by setting the ‘galley’ option.

The output is still produced page by page, but conditional space at the tops of pagds is
suppressed, and no formfeeds are generated at the start of plain output pages. Normally, SGCAL
fills up plain output pages by generating appropriate amounts of white space. Boigpigessed

when the ‘galley’ option is set. In additiofpotnotes are stored up and printed at the end of the
final page.

The ‘galley’ option is controlled by thenable and disable directives (see sections 21.15 and
21.13). The ‘online’ standard style makes use of it.

10.15 Footnote processing

By default, an output line and all the footnotes associated with it are always printed on the same
page. Wherthere are many footnotes, or long footnotes, this can lead to unacceptable amounts of
white space at the bottoms of pages. There is an option for requegtihdootnotes which
removes the constraint that a footnote must appear on the same page as the line whichisvhich it
associated. This option also permits individual footnotes of more than four lines to beveplit

more than one page.

The standard macreplitfootnotes (see chaptefl6) is the normal way of controlling thigption,
though the underlying control is via themable and disable directives (see sections 21.13 and
21.15).

The footnote splitting facilities are somewhat experimental. When a paragraph and its footnotes do
not entirely fit on the current page, there are often ndiffgrent ways of dividing up the text and

the footnotes. The existing rules are not very sophisticated and may be altered in the light of
experience. (But nothing has changed in the last ten years!)

Overview of SGCAL processing 35

11. Types of output and dimensions

SGCAL can produce two kinds of outpydtain output is a straightforward text file which can be
read using a text editor; GCODE output is a device-independent encoded form of output which
must be processed by another program @igps) in order to view or print it. Certaifacilities in
SGCAL (e.g. sub/superscripts, multicolumning) are not available for plain output.

SGCAL works internally in millipoints (there are 72000 millipoints to an inch), whichever form of
output is being generated. When plain output is being produced, the width of charaasstsisd
to be 6 points, and the depth of lines 12 points.

Unadorned dimensions specified in directives are always taken as points. Thuexarfople,
specifying
Jlinedepth 13

always sets a line depth of 13 points. Such dimensions are rounded to the resolutioowptie
device. In the case of plain output, this would be rounded to 12 points.

It is possible to specify units for dimensions in directives. The following are recognized:

pt points

pica picas — one pica is 12 points
in inches

cm centimetres

em ems

en ens

Id linedepths

An em is the width of an ‘exact space’ in the current font, while an en is half an em, except in
plain mode, when both are equal to 6 points. Here are some examples:

.indent 20 indent 20 points
.indent 20 em indent 20 ems
.Space 5 pt space 5 points
.Sspace 5 Id space 5 line depths
.Sspace 1in space one inch

The recognition of dimensions is done at a very low level in the expression decoder. Therefore a
directive such as

.setvar 5.5 cm
is permitted. The value placed in the variaide would be 155.905.

Dimensions are also used aguments for certain flag strings. In these cases, the values given
must always be in points, optionally with a fractional part.

36 Types of output and dimensions

12. The SGCAL environment

The set of parameters which control how SGCAL formats pages is known asvthenment.
There are three kinds of environment parameter:

* Global environment parameters are values which are not expeztelthnge very often during
processing, andn the whole they relate to the overall layout of pages. Examples of dhese
the page depth, the head and foot depths, and the fagts.of

e Local environment parameters are values which are changed from time to time as the
document is processed. Examples of these are the current font, the current indent, and whether
or not output lines are to be right-justified.

« Temporary environment parameters are those that cause a temporary change to the environent.
Currently the only ones available are those that affect the indent and the line length.

Frequently it is necessary to change a value in the local environment and later to tlestore
previous value. SGCAL provides a stacking mechanism for this. There are both diraotivBags

to ‘push’ and ‘pop’ the contents of the local environment, and these are used heattlg in
standard styles.

The components of the local environment are a number of switches and a number of values. Many
(but not all) of the switches are controlled by #rable and disable directives. The remainder are
controlled by individual directives or flags. The switches control the following:

forcing capital letters

emphasizing each output line

filling output lines by joining and splitting input lines
filling output pages by stretching the space between lines
the ‘galley’ option

interpreting flags in text lines

automatic hyphenation

forcing automatic hyphenation of all words

kerning of letter pairs

checking letter pairs for ligatures

underlining

joining of the next text line without a breatogep)
splitting of footnotes between pages

using formfeed characters in plain output

The values in the local environment are

the number of the current font

the number of the current font group

the justification option (left, right, both or centre)

the current set of tab stops

the current indent

the current line length

the current line depth

the current paragraph looseness

the minimum number of paragraph lines at the top and bottom of a page
the paragraph indent

the paragraph space

the greyness or colour of text, rules, and filled shapes
the width of rules

These switches and values are all preserved ovpush/pop operation. Other environmental
parameters are not preserved.

Note that the temporary indent and line length (and associated countsiotaine the local
environment.

The SGCAL environment 37

13. Variables

SGCAL supports two kinds of variable: user variables, and system variables. User vdralges
names beginningvith a letter and containing letters and digits. The standard styles make use of a
number of user variables (see chapter 15). System variables have names beginsiysy wjtfor
example sys.pagenumber

All variables contain characters strings which can be inserted into both text and directive lines by
means of the insert flag (default string ~~). For example,

~~myvar insert contents ofmyvar
~~sys.time insert the current time

System variables are maintained by SGCAL and cannot be directly changed bgeth&ser
variables can be set by tlset directive. The value for a variable may be specified as a string, or it
may be specified as an expression which is evaluated and then converted into a string represen-
tation. For example,

.set abc "02 + 2"
sets the value of the variatddc to ‘02 + 2 ', but
.setxyz 02 +2

sets the value of the variableyz to ‘4’, because it evaluates its argument as an arithmetic
expression.

User variables can have a format associated with them. The default format is simply to insert the
variables character string as it is. The alternative formats are for Roman numerals and ‘letter
numerals. If one of these formats is specified andviréables character string consists entirely of
digits and is in the appropriate range, it is converted to roman numerals or a letter as appropriate,
before each insertion. More details are given in section 21.25.

It is always possible to force the insertion mechanism to insert the basic character string for a user
variable, even if its format is not the default. This is done by preceding its nameravith’‘For
example,

.set romannumber ~~raw.romannumber + 1
would be the way to increment a variable which is normally inserted in roman numerals.

38 Variables

14. Expressions

Expressions caonccur as arguments to a number of directives (see chapter 21). Expressiwts are
recognized in any context in text lines. It is, howewdways possible to achieve tleffect of an
expression ina place where one is not permitted by assigning the value of the expression to a
variable (using theset directive), and then inserting that variable where the value of the expression
is required.

The constituents of an expression are values and operators. Round brackets can toe used
grouping in the normal way. The recognized types of value are:

strings enclosed in double quotes
numbers written in conventional notation
truth values written astrue or false

An explicit length may be given for a string by following it with a number in round brackets. The
string isextended with space characters if necessary. A second number, separated by a comma, may
also appear within the same brackets. This specifies a starting offset within the given string,
counting from one. In the following example, all the strings are equivalent:

"abcd"(2,1) "abcd"(2) “cdab"(2,3) "cdab’(,3) “ab"

A string may be forced to upper case by preceding it by a circumflex charadi@n ®string, a
double quote character is represented by doubling. Whenever a variable containing a double quote
is inserted into a directive line between double quotes, its double quote is inserted twice.

For the purposes of logical operatiof@lse is taken as a value of zero, atrde as a value of
one. However, tests assume that any non-zero value correspdngs to

Numbers may be written with a decimal point and a fractional part. SGCAL workdixeth point
numbers, to three decimal places, to make it straightforward to handle points and millipoints.
However those operators which do bit manipulation operate only on the integer part of their
arguments, clearing any fractional part to zero.

The following unary operators are provided:

set < name> test whether variablename> is defined
odd < number> test whether number is odd

even < number> test whether number is even

length < string> compute length of string in characters
width < string> compute width of printed string

+ < number> unary plus operator

- < number> unary minus operator

~ < number> unary bit negation operator

I < number> unary logical negation

The length operator returns the number of characters in its argument, whilevittb operator

returns a dimension (in points) which is the width that its argument would occupy if printed in the
current font. In both cases, the string is taken literallpecause expressions occur in directive
lines, no flag processing (other than inserts) takes place in these strings. Because of this, these
operators should be used with care.

The following binary operators, shown with their binding priorities, are provided:

0 | logical ‘or’

0 | logical ‘or’ (synonym)
1A logical exclusive ‘or

2 && logical ‘and’

2 & logical ‘and’ (synonym)
3 I= not equal

3 <> not equal (synonym)

3 ~= not equal (synonym)

Expressions 39

3 == equal

3 = equal (synonym)

3 >= greater than or equal
3 <= less than or equal
3> greater than

3 < less than

4 round rounding operator
5 - subtraction

5+ addition

6/ division

6 * multiplication

6 % remainder (modulo)

The rounding operator is used in the standard styles for rounding dimensions to the resolution of
the output device. SGCAL does such rounding internally when, for example, a line depthbist set,
it is useful externally when computing the values of variables that hold dimensions.

Operators of equal priority are evaluated from left to right. The comparison operators can be used
between two numbers or two strings. The truth values are considered to be numbdrs for
purpose.

40 Expressions

15. Standard styles

SGCAL is designed to be used withsgle definition which sets up the basic parameterstio#
output layout and definesharacter sequences for the flags. A style is selected either by means of
the -style option on the command line, or by means of thwary directive. The following
standard styles exist:

a4ps for A4 page size on a PostScript output device
abps for A5 page size on a PostScript output device
printer ‘plain’ output suitable for a lineprinter

online ‘plain’ output suitable for an online file

sgpoint for full-screen slides for projection

Each of these styles sets up a suitable page size and font flags for the output devibenand
defines a standard set of macros and flags. How#werset used for thsgoint style is somewhat
different to those used for the other styles.

If the library directive is used to request a standard style, then (if relevant) certain variables can
set beforehand to alter the default typeface and line spacing. These variables are as follows (default
values are shown in square brackets):

typeface main typeface family [‘imes’]

sanstypeface sanserif typeface family [‘Helvetica’]

maintypesize size of the main typefaces [11 (A4) or 10 (A5)]

fntypesize size of footnote typefaces [9]

typespacing main line depth [typesize plus one point]

fntypespacing footnote line depth [footnote type size]

fnsuptypesize size of footnote superscripts [typesize timesX}/1
For example,

.set typeface "Palatino”
.set typespacing 12
Jibrary "a5ps"

Basic SGCAL directives can be intermixed with the macros set up for a standard styileisbut
must be done with care, as the standard styles make certain assumptions abeumvifwiment.

For exampleat the start of each chapter or section, the environment is reset to the ‘top’ level; a
local change to the environment which is expected to persist into the next section may not do so.

Another examplef a mixing of basic and macro directives that does not work is the explicit use of
the contiguous directive to surroundarge textual items such as sections. The macros for starting
sections havechecks to ensure that they amet called inside contiguous sections, in order to
diagnose terminating directives that have been accidentally omitted.

Sandard styles 41

16. Standard macros

The following macro directives are available in all the standard styles excepgpbiat style,
which has its own special set of macros.

16.1 Aspic and endspic

.aspic
<Aspic drawing instructions>
.endspic

If SGCAL is generating fancy output, the drawing instructions are passed to the Aspic program,
which analyses the drawing and returns lines of input for SGCAL to process. If SGECAL
generating plain output, the text ‘<<picture omitted>>’ is substituted.

These macrosautomatically include the drawing inside a display (see section 16.8 below) and
ensure that any indentation is set to zero. Text in the drawing is set in roman type by default, but
the usual flags can be used to change this.

16.2 At
.at < numeric-expression>

This macro generates space directive with a suitable positive or negativeggament so that the
next line to be printed appears at the absolute depth on the page given by the argamédnisto
useful for laying out pages to a fixed specification.

16.3 Blank
.blank [< numeric-expression> [line[s]]]

This macro inserts conditional vertical blank space. The amount is calculated by multiplying the
given numeric expression by half the current line depth, unless the word ‘line’ or ‘lines’ is present,
in which case the whole line depth is used. The actual quantity of space output is sufficient to make
the white space at the current point at least as deep as the calculated amount, except at éhe top of
page, where nothing at all is output (except in ‘galley’ mode). The default argumesitiidr is

‘1’. The <numeric-expression> shouldnot contain any spaces; if it does, it should be enclased
double quote characters, as otherwise the first space enountered terminates thneadicst
argument.

16.4 Box
.box < text>

The given text string is output enclosed in a rectangular box, provided the output medium is
capable of supporting this (in plain text it is not). Otherwise the text is underlined. The string is
never split over more than one line.

16.5 Chapter and chapenv
.Chapter < title>

The chapter macro defines the start of a new chapter. difeenv macro defines thenvironment
in which the title is printed. The standard style definitions should be consulted for details.

42 Sandard macros

16.6 Chapternotes

.Chapternotes

This macro requests that all footnotes be saved up and printed at the end of each chapter, instead of
at the end of each page.

16.7 Columns
.columns < integer-expression>

This macro sets the number of columns on a page, and adjusts the footnote linelengfie and
emphasis point appropriatelifor further details, see thmulticolumn basic directive in section
21.43.

16.8 Display and endd

.display [flow] [asis] [rm]
<text lines>
.endd

These macrosre used to define displays — lines of text that are not filled and which are left
justified. They are printed all together on one page, unless the ‘flow’ option is given, incabeh
a page break is permitted after the first few lines.

The ‘asis’ option disables the recognition of flags in the text lines that make wispiay though
not the recognition of the directive flag.

At the start of a displaythe font is set to the font number set in the variathigplayfont
(which defaultsto the typewriter font) unless the ‘rm’ option is given, in which case it is siiteto
roman font.

The optionsare all optional, but if more than one is present, they must be in the order shown
above.

At the start of adisplay the current local environment (see chapter 12) is pushed onto the stack,
and at the end it is restored. Therefore any changes that are made within the display do not
propagate beyond it.

White space is automatically inserted at the beginning and end of displays. The amounts are
contained in the variabledisplaystartspace anddisplayendspace, which can be altered desired.
The default values for both variables are half the normal line depth.

16.9 Displayenv
displayenv < font number>

This macro should not be called directly by the user. It is calleddisglay to set up the
environment, and its default definition is

.macro displayenv
.Ydisable filling
.9%0justify left
.Yindent ~~sys.indent + ~~displayindent
Y%font ~~1

.%onosep

.endm

It can be deleted and re-defined by the user as necessary

Sandard macros 43

16.10 Doublespace
.doublespace

This macrosets the current line depth to 1.5 times the typespacing value, and forces a n@w line
be started.

16.11 Em and nem

.em
.nem

These two macros are shorthand for

.enable emphasis
.disable emphasis

respectively See the description ehable anddisable in sections 21.13 and 21.15.

16.12 Endnotes
.endnotes

This macro requests thatl footnotes be saved up and printed at the end of the wiadament,
instead of on each page.

16.13 Figure and endfigure

figure "< title>" [rm]
<text>
.endfigure

Figures difer from displays in that they are not constrained to appear inline in the output. If there
is notenough room on the current page, a figure will be held over and printed at the top of the next

page.
The title is printed below the figure, and it is automatically numbered. The number okexte

figure is held in the variabléigurenumber. If this value is set negative, figure numbering is
suppressed. If the variabliguretitle is set to the value ‘false’, then figure titles are not printed.

16.14 Footnote and endf

footnote
<text lines>
.endf

These macrosre used to define footnotes. They automatically number the notes and arrange to
output the numbers appropriatelyhe footnote numbers are reset at the start of ecluhpter
except in ‘galley’ mode and afteendnotes has been obeyed.

Normally, footnotes are output at the foot of the current page, and each footnote is complete on one
page. Thesplitfootnotes macro can be used to vary this.

In addition, thechapter notes andendnotes macros carbe used to request that footnotespbated
at the ends of chapters or at the end of the entire document, respectively

By default, footnotes are numbered sequentially through chapters, or through the entire dd@cument
endnotes is used. Howeverfor fancy output onlyit is possible to specify that the footnotes on
each page are separately numbered, starting from 1, by including

.set perpagenotenumbers true

at the nead ofhe document. This facility assumes that there are never more than nine footnotes per
page, since it allocates space for just one digit for each number

44 Sandard macros

16.15 Footnoteenv
footnoteenv

This macro should not be calletirectly It is called by thefootnote macro at the start of each
footnote, to set up the footnote environment, and by default its definition is

.macro footnoteenv
.Ylinedepth ~~fntypesize
.Y%fontgroup 2

.%font O

.Ylinelength ~~fnlinelength
Yindent ~~fnindent
.%justify both

.Y%enable filling

.endm

It can be deleted and re-defined by the user if a different environment is required.

16.16 Nofoot
.nofoot
This macro cancels any defined foot lines and sets the foot depth to zero.

16.17 Numberpars, nextp and endp

.numberpars [< type>]
<text>
.nextp
<text>
.endp

This set of macros provides for automatically numbered, indented paragraphs. If the type is
unspecified, arabic numbering is used. The alternative types are

roman lower case Roman numerals
ROMAN upper case Roman numerals
alpha lower case letters (a, b, c, etc.)
ALPHA upper case letters

If the type is anything else, it is used as a string to mark the paragraphs. Thus it can be used to
supply a ‘bullet’ if required. By default, the paragraph numbers are printed in round brackets. This
can be altered by redefining the fligpbracket which should be defined with two strings, one

for before each number, and one for after. For example,

.cancelflag $npbracket
flag $npbracket "[" ""

arranges for square brackets to be used instead of round ones, while

.cancelflag $npbracket

flag $npbracket " ".

causes them to be followed by a figlop, with no preceding characters. This flag is usely
when paragraphs are actually being numbered, in any printing format. It is not used if an arbitrary
string is being used to mark the paragraphs.

White space is automatically inserted before each numbered paragraph, and after the last one. The
amount is controlled by thepspace variable, whose contents default to half the line depth.

The numberpars, nextp andendp macro directives can be used in a nested fashion; thattign
one set of numered paragraphs, another may be enclosed.

Sandard macros 45

16.18 Pagenumbers

.pagenumbers centre
.pagenumbers atedge

This macrosets up a foot depth to be twice the current line depth, and defines a singladoot
containing the page numbegitherin the centre of the line, or at the lefthand or righthand edge,
depending on whether the number is odd or even. The default is centred page numbers.

16.19 Rule
.rule

This macrocauses a horizontal rule (that is, a straight line) to be drawn from the current indent to
the current line length, followed by a call to thkank macro. Details of more complicated rules
are given in sections 20.20, 20.38, and 20.43. SGCAL is also capable of drawing curvedsiéees —
section 20.3.

16.20 Section and sectenv
.section < title>

The section macro defineshe start of a new section. Thectenv macro defines the environment in
which the title is printed. The standard style definitions should be consulted for details.

16.21 Singlespace
.singlespace

This macro sets the current line depth to the original typespacing value, and forcedirenewe
started.

16.22 Splitfootnotes
.splitfootnotes on | off

This macro controls whether footnotes must appedapto on the same page as their associated
lines, or whether they may tseparated from them, or split into more than one piece. iQplies

that splitting is permitted, ‘6f that it is not. The default is to keep footnotes and their lines
together (i.€off’). The macro may be used several times in a single source, to change thar state
different parts of the document. The new state applies to the current paragraph and any subsequent
paragraphs. (See section 10.15 for further information.)

16.23 Subsection and subsectenv
.subsection < title>

The subsection macro defines the start of a new subsection. Siesectenv macro defines the
environment in which the title is printed. The standard style definitions should be consulted for
details.

16.24 Subsubsection and subsubsectenv
.subsubsection < title>

The subsubsection macro defines the start of a new subsubsection. slibsubsectenv macro
defines the environment in which the title is printed. The standard style definitions should be
consulted for detalils.

46 Standard macros

16.25 Table and endtable

table "< title>" [rm]
<text>
.endtable

Tables are essentially like figures, except that a separate sequence of numbers is maintained, and
their title lines start with the word ‘table’ instead of the word ‘figure’.

The title is printed below the table, and it is automatically numbered. The number of the next title
is held in the variabléablenumber. If this value is set negative, table numbering is suppressed. If
the variabletabletitle is set to the value ‘false’, then table titles are not printed.

16.26 Useaccents and usegreek

.useaccents
.usegreek

These macros request the inclusion of sets of standard flags for accented characters, and for the
Greek character set. Accented characters are requested by flags of th$abwmute , etc. for

lower case,and $Aacute , etc. for upper case. Greek letters are requested by flags of the form
$alpha , etc. for lower case, arfAlpha , etc. for upper case.

16.27 Usespecials
.usespecials

This macro requests the inclusion of flag definitions for all the special characters in the standard
encoding for PostScript fonts, using the PostScript character names precededatigraFor
example, the upside-down exclamation mark is given the reexe@amdown. If this macro is

called when generating plain output, all the flags cause a question mark to be printed.

Sandard macros 47

17. PostScript-only macros

The following macros are available only in the PostScript-generating styles:

17.1 Landscape
Jlandscape

This macro requests that the current and subsequent pages of output be in landscape orientation. It
does not of itself cause amphange in the settings of the line length or page depthjust arranges

for the output pages to be ‘turned round’. It is usually necessary, therefore, to make adjusiments

the line length and page depth after calliagdscape.

17.2 Picture, endpicture, and psinclude

Jpicture < space> [< x>][< y>] [< mag>]
<PostScript description of picture>
.endpicture

This macrois used for including PostScript generated by other systems into an SGCAL document.
The firstagument is an expression specifying the total vertical amount of space requiree for
‘picture’. The second and thirdguments are dimensions which specify thésetf of the origin

from the bottom lefthand corner of this space, and the &malment is the magnification. Thast

three arguments default to 0 0 1, and must be specified as single numbers; they may not be
expressions.

The PostScript itself can be included in one of two ways. [bhgcontrol SGCAL directive
(section 21.40) can be used to include lines of PostScript directly. Alternatively, the macro

.psinclude < file name>

can be used to generate a suitable directive for including the given file of PostScript. Pictures are
normally inserted inside displays or figures.

17.3 Portrait
.portrait

This macro can be used to reset the output orientation to portrait, following the lasesohpe. It
applies to the current and any subsequent pages. It is usually necessary to make adjustments to the
line length and page depth after callipgrtrait.

17.4 Transfor mfont
.transformfont < font> < dope> < vstretch>

This macro requests the application of a transformation matrix to the given font. It can be used to
set up sloped or vertically stretched fonts. The transformation matrix that is applied to the font is,
in PostScript notation,

[L0< dope> < vstretch> 0 O]

The aguments must be specified as single numbers; they may not be expressions. For example, to
stretch font number 53 vertically by 25% while at the same time sloping it to the right bytHe%,
directive

.transformfont 53 0.15 1.25
could be used. See section 21.3 for details of how to set up additional fonts.

48 PostScript-only macros

18. Standard flag strings

The following basic flag strings are defined by the standard styles. Each string is followed by the
name that is used for defining the flag. For details of what each flag does, see chaBasi20
flags).

$a abstab ~~ insert
$B back +++ join
$bc bezier $L level
$caps caps ™ mark
$c centretab $N nextfnumber
$C centreheretab $nh nohyphen
$= character $> nosplitspace
$rgb colour $pop pop
$D down $push push
$nocaps endcaps @ quote
$E endheretab rl right-to-left
$e endtab Psf shapefill
$pu endunderline $s space
~ dhyphen $S splitspace
$f font $sr srule
$g fontgroup $su startunderline
$ff forcefont $<> stretchspace
$fh forcehyphen $t tab
$F forward $< thinspace
$hr hrule $U up
- hyphen $vr vrule
$i indenttab

The following compound flag strings are defined by the standard styles:
$$ is defined ag"
$fh{ is defined as$push$th”
$nh{ is defined as$push$nh”
$ri{ is defined as$push$rl"
} is defined as$pop"
is defined as$s"”

$npbracket is defined as(")"

_ is defined as$su" "$pu”

The closing curly bracket is a general terminator for changes of font and other changes to the local
environment. Thdont-changing (and some other) flags cause the local environment to be pushed
onto the stack, and this flag causes the previous values to be restored. The font changarg flags
defined below, and details of the local environment can be found in chapter 12.

Note that a number of macros in the standard styles also cause restoration of the previous state of
the local environment for example, the start of a new section, or of a new numbered paragraph.
Therefore it is best to keep font changes that are expressed using the standard flags entirely within
such larger text items.

The flag consisting of two successive dollars is defined to have no effect. Its use is for terminating
other flagsthat might otherwise be misinterpreted. For example, if an occurrence of the centring tab
($c) is immediately followed by the letters ‘aps’, it would be misinterpreted as an occuroénce

the caps flag unless followed by two dollar signs.

The flag consisting of a single sharp si¢f) expands into a call to the space flag with
dimension following it. This causes an amount of space equal to the ‘exact space’ of the current
font to be inserted into the line.

Sandard flag strings 49

The flagconsisting of an underscore character alternately switches underlining on and off, while the
use of the flag callefinpbracket is described in chapter 16.

The following compound, device-specific flags are defined by the standard styles in oadeess
frequently used special characters:

em-dash
-- en-dash
double opening quote
double closing quote

--> right arrow

<-- left arrow

<> double arrow
$) pound sterling
($E) Euro

(© copyright sign
(TM) trademark sign
$ minutes sign
$. ‘bullet’

The following font-changing flags are defined by the standard styles. The actual definiteashof
flag are dependent on the output device; however, each always begins by pushing the current
environment onto the stack before changing typeface. The terminating flag is therefore glways

$rm{ roman

$it{ italic

$sl{ slanted

$bf{ bold

$bi{ bold italic

$tt{ typewriter

Pss{ sanserif

$sc{ small caps

Psp{ special chars font
$erm{ enlaged roman
$crm{ compressed roman

The smallcaps flag simply changes font; it does not of itself force subsequent input into capital
letters. All except the last two of these flags work within the current fontgroup; that is, thef size
the font is taken from the group. See section 21.20 for details of font groups. The last two flags
select the fonts by absolute number

The stylesin which headings appear (large type, bold face, etc.) are controlled by flags which are
placed before each heading text. They are:

$chead{ chapter heading
$shead{ section heading
$sshead{ subsection heading
$ssshead{ sub-subsection heading
$fkt{ footnote key in text
$fkn{ footnote key for note
S$ititlef figure title

Sttitlef table title

The heading texts are always terminated by a closing curly bracket. Before re-definingloese of
flags, it is first necessary to cancel it using ¢hecelflag directive. Thus, for example, to arrange
for section headings to be in sanserif type:

.cancelflag $shead{
flag $shead{ "$ss{"

The variablehnspace contains a string to be inserted between the number of a chapter, section or
subsection and its title. By default this string is a single space, but it can be changed as required.

50 Sandard flag strings

19. Standard variables

The standard styles make use of a number of variables, both as parameters for varying what they
do, and also forinternal working. Those that control the typeface and type spacing have been
described above. Others that are of most interest to the user are:

chapname name of the current chapter

chapstart ‘true’ while processingchapter

chapter number of the current chapter

contents set ‘true’ to generate contents information
displayindent amount by which to indent displays; default O
figurenumber number of the next figure

figuretitle if false, no figure titles

footnote number of the previous footnote

hndot dot to print after chapter number
hnspace space after chapter/section titles
npindent amount to indent numbered paragraphs
perpagenotenumbers set ‘true’ for per-page footnote numbers
rchapter set ‘true’ to start chapters on right-hand pages
section number of the current section

sectname name of the current section

sectstart ‘true’ while processingsection

ssectname name of the current subsection

ssectstart ‘true’ while processingsubsection
sssectname name of the current sub-subsection
sssectstart ‘true’ while processingsubsubsection

style the name of the current style

subsection number of the current subsection
subsubsection number of the current sub-subsection
tablenumber number of the next table

tabletitle if false, no table titles

The numbering of chapters, sections, subsections, sub-subsections, figures, and talidles can
suppressed by setting the variable holding the current number to a negative value. For example,

.set chapter -1

causes subsequent chapters not to be numbered. The numbering of footnotes normally continues
throughout a chapter (or the whole documernidnotes is used). However, if

.set perpagenotenumbers true

is used, the numbers are reset for each page. This facility is available only for fancy output, and it
assumes that there are no more than nine footnotes on each page.

Figure and table numbers refer to the next such item, so that it is easy to include references such as
in figure ~~figurenumber below
immediately before the definition of a figure.

The variables holding the names of chapters, sections, etc. can be used to generateheaaising
and feet, and the variabthapstart can be used to suppress or changeraing head at thstart

of a chapter Similarly, sectstart etc. can be used to do this if a section coincides with the top of a
page.

The variablehndot is initialized to contain a single full stop. Its contents are printed dafter
chapter number at the start of a chapter

The variablehnspace is initialized to contain a single space. Its contents are printed between
chapter and section numbers and their titles. In the case of chapters, it fotldots

Standard variables 51

If the variablecontents is set to ‘true’ (the default is ‘false’) then information about chapéerd
sections etcis automatically output to the index file, for processing into a table of contents. The
contents entries can be distinguished from other entries in the index file by the fact thateach
entry contains$e’ immediately before the page number

The style variable can be used as follows to supply a default style if one is not given on the
SGCAL command line:

.if Iset style
Jibrary "< default style>"
fi

This variable is also used internally to prevent more than one style being set at once.

52 Sandard variables

20. Basic flags

Basic flags are those whose actions are built in to SGCAL. Inctiapter details of the actiofor

each such flag are given. The character sequence for each flag that is used in the standard styles
given in parentheses for each flag, preceded by the name used to define the flag when it is not the
same as the descriptive name.

Flags are defined by thHkag directive (seesection 21.18). The standard styles contain definitions of
a standard set of flag strings (see chapter 18). These are listed for each flag, and are used in the
examples in this chapter

A number of flags are followed bgguments, which are frequently dimensions (for exampie,

width of space to insert). SGCAL does not recognize expressions in text lines (which is where
these flagsire processed), but because it scans lines for variable insertions before fosodimsr

flags, it is possible to compute values for thaggiments. For example, to draw a vertical rule that
has a length of 10 times the current line depth, the following could be used:

.set rlength 10*~~sys.linedepth
$vr~~rlength

This facility can be used for any type aigument. It can even be used to insert the flag strings
themselves.

20.1 Absolute tab (abstab, $a)

This flag must be followed by a dimension in points specifying an absolute horizontal position on
the output line for the start of subsequent text, for example:

$a46this is 46 points from the left

If the flag is followed by an asterisk, then the number which follows is interpreted as a number of
ems in the current font, for example

$a*20this is 20 ems from the left

If the requested position is to the left of the current position, a new line is started, unless this flag is
encountered at the start of an indented line, in which case a leftwards movement is generated.
Space characters in the input immediately before and immediately after this flag amiment

are ignored.

20.2 Back ($B)
This flag is used in conjunction with thaark flag; see section 20.26.

20.3 Draw Bezier curve (bezier, $hc)

This flag must be followed by six dimensions, separated by commas. Negative values are permitted.
The dimensions are interpreted as points, unless preceded by an asterisk. For horizontal dimensions,
an asterisk specifies a dimensionems; for vertical dimensions an asterisk specifies a dimension

in units of the current font size.

The dimensions are interpreted as three pairs of horizontal and vertical coordinates, relative to the
current point on the output line. A Bezier curve is drawn from the current point to the position
specified bythe third pair, using the first and second pairs as the coordinates of the control points.
For example, using the standard flag:

$bc10,10,40,10,50,0

The current position othe line is moved to the end of the curve. The width of lineastrolled
by the rulewidth directive, and the colour bgraphcolour or graphgrey (or their synonyms
rulecolour andrulegrey). This flag isintended mainly for use by programs generating lineaart
SGCAL input.

Basic flags 53

20.4 Force capitals (caps, $caps)
The caps flag switches on the environment option to force all subsequent text letters to upper case.

20.5 Do not force capitals (endcaps, $nocaps)

The endcaps flag switches off the environment option to force all subsequent text letters to upper
case.

20.6 Centre tab (centretab, $c)

This flag causes text between it and the next tab flag (of any kind) or the end of the input line in
which it occurs (whichever comes first) to be centred between the indent and the line length. For
example:

$c this text is centred

If centring on the current line would require the insertion of a negative amount of space, because of
previous text on the line, a new output line is automatically started. Space characters in the input
immediately before and immediately after this flag are ignored.

20.7 Local centre tab (centreheretab, $C)

This flag causes text between it and the next tab flag (of any kind) or the end of the input line in
which it occurs (whichever comes first) to be centred at the current point on the outputsline.
effect isthe same as inserting the appropriate amount of negative space at the current point, and it
does not check for overprinting. It is typically preceded by another sort of tab or a sequence of
spaces. Space characters tivre input immediately before and immediately after this flag are
ignored.

20.8 Character ($=)
The character flag is used to specify a text character by means asicitsode in decimal. For
example,

$=185
specifies character number 185 in the current font. A character specified with the character flag is
always treated as a text character; in particular

$=32
causes character 32 in the current font to be printed — it is not treated as a space.character

20.9 Colour ($rgb)

This flag changes the colour of subsequent text. It doesafexdt the colour of graphics (see
graphcolour). The flag must be followed by three real numbers in the rangd 0,0separatety
commas. They specify the red, green, and blue components of the, caepectively For
example,

$rgb0,0,0.9This text is almost full-strength blue.

If a digit follows, the null flag ($$) must be used to terminate the final numbeob®ain grey text,
use three identical numbers. Three zeroes gives black; three ones gives white. The curreist colour
kept in the environment, and so can be saved and restored.

20.10 Discretionary hyphen (dhyphen, ~)

This flag marks positions in words where a hyphen may be inserted if necessary. If no hyphen is
required, nothings printed. If a word contains one or more discretionary hyphens it is only ever
hyphenated at those places; the automatic hyphenation rules are not used. See also the hyphen flag
and chapter 23.

54 Basic flags

20.11 Down ($D)

The down flag is used to move the current printing point down within a line, typitaily
subscripts. Ittan be followed by an absolute number of points, or an asterisk and a factorisvhich
multiplied by the current font size. If the following character is neither an asterisk nor atldigit,
movement is one-third of the current font size. Thus,

$D1.5 moves down by 1.5 points
$D*0.6 moves down by 0.6 times the current font size
$D moves down by one-third of the current font size

The down flag operates only within the current output line. It doesffemtt the vertical position of
characters on subsequent lines.

20.12 End-of-line tab (endtab, $e)

This flag causes the text that follows it, up to the next tab flag (of any kind) or the endimgbuhe

line in which it appears (whichever comes first) to be output at the end of an output line. If
necessarybecausef the length of the text, a new output line is started for this purpose. The end-
of-line tab is often used in conjunction with the centring tab. For example:

left text $c centre text $e right text
Space characters in the input immediately before and immediately after this flag are ignored.

20.13 Local right-aligning tab (endheretab, $E)

This flag causes the text that follows it, up to the next tab flag (of any kind) or the endimgbuhe

line in which it appears (whichever comes first) to be output such that it ends at the current point.
Its effect is the same as inserting the appropriate amount of negative space at theaint;esrtd

it does not check for overprinting. It is typically preceded by another sort of tab or a sequence of
spaces. Space characters thre input immediately before and immediately after this flag are
ignored.

20.14 End underlining (endunderline, $pu)

This flag turns off the underlining switch in the current environment, thereby causing subsequent
text not to be underlined.

20.15 Change font (font, $f)

The fontflag must be followed by a font number in the range 0 to 99. It selects a font from the
currentfont group. If the current font group is group zero, then the font which is selected is the one
with the given absolute font numbétherwise the definition of the font group is consulted and the
given number is used as an index into the list of fonts which make up the group.

20.16 Change font group (fontgroup, $g)

This flag must be followed by the number of a defined font group, and it makes that group the
current fontgroup. It does not cause a change of font. See section 21.20 for further details of font
groups.

20.17 Force output of font (forcefont, $ff)

When SGCAL is outputting in fancy mode (i.e. outputting GCODE) it normally writes a font
change commananly when it is about to output characters in the new font, thereby avoiding
redundant font changes. This means that font changes almost always follow spacing commands
GCODE. For example, an input line of the form

aaa $it{bbb ccc} ddd
generates as output

Basic flags 55

aaa< space><change font>bbb< space>ccc< space><change font>ddd

although the size of the third space is that of the original font. In most cases the order of spacing
and font-changing commands in the GCODE is immaterial, but there are some special applications
where it does matter.oTcaterfor these cases, a flag which causes a pending font change to be
output isprovided. The standard styles define the st#ifig for this flag; an input line of theorm

aaa $it{bbb ccc}$ff ddd
generates as output

aaa< space><change font>bbb< space>ccc< change font><space>ddd

If this facility is frequently required, users can define shorter flags of their own, or even re-define
the closing curly bracket to include it.

20.18 Force hyphenation (forcehyphen, $fh)

SGCAL does not by default automatically hyphenate the last word of a paragraph, neo@hy
which containscapital letters. This flag can be used to request it to do so. The stastylas
define the stringbfh to set this option, and also the striith{ to ‘push’ the environmenénd
then set the option, so thatcan be used to return to th@tus quo, as in this example:

this is the end of a $fh{paragraph}.
Details of hyphenation are given in chapter 23.

20.19 Forward ($F)
This flag is used in conjunction with tineark flag; see section 20.26.

20.20 Horizontal rule (hrule, $hr)

This flag must be followed by a dimension which specifies the length of horizontal rule to be
drawn. The dimension is interpreted as a number of points, unless preceded by an asterisk, in which
case it specifies a number of ems in the current font. The rule is drawn at the currefihdase
level, and the current point is moved to the end of the rule. The dimension may be nedutive,
causes the rule to be drawn to the left. Double negatives are permitted, so a construction such as

$hr-~~somevar

where the variableomevar contains a negative number, work as expected.

For example, to draw a horizontal rule of length 1.5 inches at the current point,
$hr108

is used. The thickness and colour of the line are specified byulleevidth and graphcolour or
graphgrey directives.

If there is no dimension following the flag, no rule is drawn unless there is a line position mark in
effect, in which case the rule is drawn to the current ‘high water mark’ of the line (i.e. the
rightmost point ever reached). See section 20.26 for details of position marking.

20.21 Hyphen (-)

This flag marks positions in words where a hyphen is always inserted, and where the line may be
split if necessaryit is recognized only if preceded and followed bietter In the standard styles, a
single hyphen character is used for this flag.

If a word contains one or more hyphens it is only ever hyphenated at those placagtotinatic
hyphenation rules are not used. See also the discretionary hyphen flag (section 20.10).

56 Basic flags

20.22 Indent tab (indenttab, $i)

This flag causes the current point in the output line to be moved to the current indent. It is useful in
conjunction with theempindent directive for outputting materiagh the indent spacd=or example:

.indent 5em
.tempindent O
XX $i This is indented 5 ems, with XX in the margin.

If necessary, that is, if the current point is already past the indent width, a new line is started. Space
characters in the input immediately before and immediately after this flag are ignored.

20.23 Variable insertion (insert, ~~)

The insertflag is used for the insertion of variables and macro arguments in both tedirectd/e
lines.

20.24 Line joining (join, +++)
The line joining flag is recognized only at the ends of lines which are read from an input file. It

causes the subsequent line to be joined on to the one in which it appears, to make a single long
input line.

20.25 Level ($L)

The level flag causes the current point to be moved back to the base level of the litygpitaity
used after the up, down, or vertical rule flags.

20.26 Position marking (mark, $M)

This flagis used in conjunction with the forward and back flags to achieve overprinting effects in
lines. The mark flag causes the current horizontal position to be saved on a stack; ttiladack
causes an amount of (usually negative) space to be inserted into the line so that the current point
returns to the marked horizontal position; the forward flag causes an amount of non-negative space
to be inserted into the line to take the current point to the rightmost position reached siasé the
mark.

For example,using the standard definitions for these flags, the words ‘over’ and ‘print' can be
printed on top of each other by the following input:

$Mover$Bprint$F

It is important to include the final forward flag, even if it is clear that it will not result inspage
being inserted, because between the mark and forward flags, all spaces are marked as non-splitting
spaces.

All three flags should always appear in the same logical input line. The back flag may be used any
number oftimes between a mark and its corresponding forward flag. Also, uses of thestatizee

may be nested for more complicateffects. The horizontal rule flag (section 20.20) behaves
differently if it appears without a dimension between a mark and a forward flag.

20.27 Per-page footnote numbers (nextfnumber, $N)

For fancy output, SGCAL is capable of automatically generating footnote numbers thatoreset
each page, provided there are no more than nine footnotes on a page. At the point wheagtyou

to reference the next number in the text, and also at the point where the number appears in the
footnote, this flag is used. Normally this is handled automatically by a macro for footnotes.

20.28 Disabling hyphenation (nohyphen, $nh)

This flag unsets the switch in the local environment that allows SGCAL to attempt to hyphenate
words automatically. There is no flag for resetting the switch; this is normally donestoying the
previous environment or by using tleaable directive (section21.15). The standard styleefine

Basic flags 57

$nh as the basic flag string, adhh{ as a flag which ‘pushes’ the local environment and then
unsets the switch. The previous state can then be restored by means}ofildlge as in this
example:

don’t hyphenate $nh{hyphenation}

The word‘hyphenation’ in this example will not be hyphenated. Details of hyphenation are given
in chapter 23.

20.29 Non-splitting space (nosplitspace, $>)

This flag inserts a space into the current line which has the width of a normal spacis, and
stretchable, but which will not be recognized as a place at which the line may be split.

20.30 Environment restore (pop, $pop)

The popflag causes the local environment to be restored from the top entry on the environment
stack, provided that it is an ‘anonymous’ entfpr further details of the environment staskee the
description of thepop directive in section 21.56.

20.31 Save environment (push, $push)

The push flag causes the local environment to be saved on the environment stack. The entry
marked ‘anonymous’. For further details of the environment stack, see the descriptionpattthe
directive in section 21.56.

20.32 Output right-to-left (righttoleft, $rl)

This flag sets a switch in the environment that causes subsequent input to be reversed, and output
in right-to-left order The standard styles defigl as thebasic flag string, an®rl{ as aflag

that ‘pushes’ the local environment and then sets the switch. The previous state can be restored by
means of thg flag, as in this example:

The next word is $rl{backwards}.
The output is ‘“The next word is sdrawkcab.’

There is a system variable callsgs.righttoleft, which is ‘true’ if the right-to-left state isurrently
set in the environment.

The right-to-left state has an effect only when a line is about to be output. All processintp prior
that is undkected. Thetext between the setting of right-to-left and its unsetting, or the eriteof

line, or any tab, is output by reversing the order of the words, and within each word, reversing the
order of the letters. Thus,

The quick brown fox jumps $ri{backwards over} the lazy dog.
comes out as
The quick brown fox jumps revo sdrawkcab the lazy dog.

Any kerningor ligatures that are set for the font take effect on the reversed text. For extimaple,
output from$ri{if} in a roman font is the ‘fi’ ligature.

You need to take care when using right-to-left output. In particular, the following should be noted:

» Take care with underlining. It does work if it is turned on and off wholly within a backwards
section, orif a backwards section is contained within an underlined section, but if it is not
nested like this, there may be problems.

» Eachtabbed field is independently reversed, and tabs still work from left to right.
» Thejustification setting is not changed automatically

* Automatichyphenation does not work. It is probably best to turn off automatic hyphenation.

58 Basic flags

20.33 Character quoting (quote, @)

The quote flag is a means of entering characters as text that would otherwise be interpreted as flags.
The standardtyles define thécharacter as the quote flag. For example, if a closing twdgket

is wanted in the text, it must be entered@} If a space character is preceded by the quoteiflag,

is treated as character 32 in the current font, and is not treated as a word separator

To enter an@character itself as tex@@nust be typed. When using a standard style, it is good
practice always to us@in front of any occurrences of the charactérss, and_ in the text, even
though not all occurrences 8fwill be recognized as the start of a flag.

20.34 Space insertion (space, $s, see also #)

The space flag is used to insert given amounts of space into a text line. Such spatbeis
stretchable norecognized as a point at which the line can be split, and is sometimes called ‘hard
space’. If the flag is followed by a digit or a minus sign, then what follows must be a dimension
specifying a positive onegative amount of space, in points. The dimension may incluiaal

point and a fractional part. A negative amount of space moves the current point to the left. It is
possible to move it beyond the left-hand margin by this means.

The space flag may alternatively be followed by an equals sign and awb#racterin which

case theamount of space inserted is equal to the width of the given character in the currend font. T
insert a negative amount of space equal to the width of a given chathetspace flag is followed

by a minus sign, an equals sign, and then the character

If the space flag is followed by an asterisk, this must be followed by a nuopigEmally preceded
by a minus sign and containing a fractional part, and it signifies a multiple extat space width
of the current font.

If the flag is followed by none of these alternatives, then the width used is precisely the exact space
width for the font.

The standard styles define the strirgs * as the spacdlag. Using this definition, the following
examples show each of the possible kinds of space that may be inserted:

$s the exact space width

$s=x the width of the character X’

$s-=x minus the width of the character X’
$s1.2 1.2 points

$s-3.6 -3.6 points

$s*0.6 0.6 times the exact space width
$s*-1.3 -1.3 times the exact space width

The standardstyles also define the fldg’ to expand to $s’, which always gives an exact space
even if it is followed by a digit, since searches for flemguments do not go beyond the eofl
previous flag expansion strings.

20.35 Splittable non-stretchable space (splitspace, $9)

This flag operates exactly as the space flag, except that a line may be split at the point where it
appears.

20.36 Extra-stretchy space (stretchspace, $<>)

This flag inserts a space into the current line which has the width of a normal spacis, and
stretchable, but which wilhot be recognized as a place at which the line may be sptitfférs

from the non-splitting space in the following way: if a line which is being stretched for justification
contains anyextra-stretchy spaces, that the additional space is distributed between tlspsees,

the other stretchable spaces being left at their initial widths. In addition, if the final line of a
paragraph contains at least one extra-stretchy space it is always fully justified, prthaeded
appropriate justification option is set.

Basic flags 59

20.37 Filled shapes (shapéfill, $sf)

A sequenceof drawing instructions that is enclosed between two instances of this flag causes a
filled shape to be drawn. No outlines are drawn; if an outlined shape is required, the outline must
be separately specified. The colour tife shape is the current graphic colour (set thg
graphcolour directive). It is not expected that this flag be used directly; it is provided as a facility
that Aspic can use in the output it returns to SGCAL.

20.38 Sloping rule (srule, $sr)

This flag must be followed by two dimensions, separated by a comma, which dpecifgrizontal

and vertical dkets ofthe rule to be drawn. Each dimension is interpreted as a number of points,
unless precedeldy asterisk, which causes the horizontal dimension to be taken as a number of ems,
and the vertical one to be taken as multiplying the current font size.

The rule is drawn starting at the current base line level, at the current horizontal position, and the
current point is moved to the end of the rule afterwards. The dimensions may be negative, which
cause the rule to be drawn to the left (for the horizontal dimension), or downwards (Verttbal
dimension). The thickness and colour of the line can be specified by ullevidth and
graphcolour or graphgrey directives.

20.39 Start underlining (startunderline, $su)

This flag causes the underlining switch in the current environment to be set. Subsequent text will be
output underlined.

20.40 Tab ($t)

This flag causes the current point in the output line to be moved on to the next defined tab stop. It
may alsocause centre or end-aligning of the tab field; for details setaltiset directive insection

21.70. If there are no further tab stops to the right of the current position in the output line, an error
is generated and the flag is ignored. Space characters in the input immediately before and immedi-
ately after this flag are ignored.

20.41 Thin space (thinspace, $<)

This flag inserts a small amount of non-splittable, non-stretchable space into the current line. The
width is determined by the current font.

20.42 Up ($U)

This flag is the complement of the down flag, and causes the current point to be moved upwards
within the current line.

20.43 Vertical rule (vrule, $vr)

This flag causes a vertical rule to be drawn at the current point. It must be followed by a dimension
in points, which may be negative. Positive rules are drawn upwards. If the dimengmecésed
by an asterisk, it is multiplied by the size of the current font.

The current point ignmoved vertically to the end of the rule. There is no horizontal motion. The
level flag can be used to restore the current point to the base line. The thickness and colour of the
line can be specified by thh@lewidth andgraphcolour or graphgrey directives.

60 Basic flags

21. Basic directives

This chapter contains descriptions of all the basic directives that are built into the SGCAL program.

Most of those whose arguments are numeric allow expressions to be used as well as single
numbers; exceptions are the directives dealing with fonts. The phrase ‘dimension expression’ is
used tomean an expression which has a numeric value that is interpreted as a dimension, while
‘integer expression’ is used for an expression which evaluates to an integer value.

21.1 Aside

This directive causes all input lines that follow it, up to a line containing the direstoe to be
processed forinserts only, and then written to the file defined by thgde keyword on the
SGCAL command line. While searching femda, any macros that are encountered are expanded.
To avoid this expansion, the directive flag on such lines can be preceded by the quote flag.

21.2 Backspace

This directive specifies hothe action of backspacing, for the purpose of overprinting characters, is
to be represented in plain output. It must be followed by one of the following words:

» backspace: overprinted characters are output @haracter, backspace’, with underlined
characters characters as ‘_, backspace, character

* cr: a carriage return is used to separate two overprinting lines, with the overprinting characters
(including underlines) on the first of them so that if the file is displayed on a screen, the
overprints get wiped out.

» crlf: overprinted characters are output on a second line underneath the main line. Underlined
characters have * (a hyphen) printed below them.

* none: overprinted characters are not output at all.
The default setting in the SGCAL program is
.backspace backspace
However theonline style sets the option to
.backspace crlf
The backspace directive has no effect when SGCAL is generating fancy output.

21.3 Bindfont
This directive is used to specify which fonts are to be used by SGCAL, and its syntax is
.bindfont < nl>[< n2>]* "< font name>" < sizel> [< size2>]*

where 1>, <n2>, etc. are font numbers, in the range99-and<sizel>, <size2>, etc. are the
corresponding sizes required, in points (with permitted fractional part).

The name of the font is in two parts, separated by a slash. The first names tfamibntand the
second the actual foritself. For PostScript output, the font family name is ‘atl’ (Adobgpd&
Library). The same font name may be used in sey®@ralfont directives, but it is more efficient to
specify all the fontsthat require it together, as the font metric file is then read only once. For
example,

.bindfont 0 5 8 "atl/Times-Roman" 10 14.5 17
The appearancef a bindfont directive inan SGCAL input file indicates that the output isb®
GCODE. If nobindfont directives appear, output is as plain text.

Basic directives 61

The standard styles (apart from ‘pririjeoind appropriate sets of fonts, but the user is frebital
additional ones if required. It is suggested that user font numbers start at 51 and work upwards,
avoid clashes with the numbers used by the standard styles.

All bindfont directives must appear at the start of the input, preceding any text lines.

See the descriptions dbnt and fontgroup (sections 21.19 and 21.20) for further information on
the use of fonts.

21.4 Call
This directive must bdollowed by the name of a command in the underlying operating system,
possibly followed by one or more options settings. No quotes are used. For example:

.call aspic -sgcal -nv

This directive causes thines that follow it, up to a line containing the directigedcall, to be
read, processed for inserts, and written to a temporary file. While searchiegdf@i|, any macro
directives that are encountered are expandedavoid this expansion, the directive flag sach
lines can be preceded by the quote flag.

The named command is then called with two additional arguments: the name of the file containing
the copied lines, and the name of a second temporary file into which the result of processing the
lines is to be written.

When the command returns, the output file is read and processed as SGCAL input. This facility
enables parts of SGCAL input files to be processed by specialised pre-processorsbégfgre
typeset. In particular, this is the mechanism by which the Aspic line-art program is called.

21.5 Cancelflag
This directive must be followed by a defined flag string. It causes it to become undefined. For
example:

.cancelflag $rm{

This is necessary if a flag string is to be re-defined.

21.6 Cancelmacro

This directive must be followed by the name of a defined macro. It causes it to become undefined.
If a macro is re-defined without an intervening useaoicelmacro, a warning message is output.

21.7 Colseparation

This directive must be followed by a dimension expression. It specifies the amount of horizontal
separation between multiple columns. The default value is 12 points.

21.8 Comment
The rest of the input line following treomment directive is written to the standard error stream.

21.9 Contiguous

This directive specifies the start of a block of text which must be printed contiguously, that is, all
on onepage. The end of the block is indicated by ¢hdc directive. SGCAL reads and processes

all the lines in the block, and computes its depth. It is then associated with the current output line
that is being processed.

When the time comes to allocate the current output line to a page, if the contiguous block also fits
on the page, it is output following the current line. Otherwise it is held over and printed at the top
of the next page. This may result in its appearing ‘out of line’ with the input.

62 Basic directives

There are three optional arguments that may be used witlottieguous directive. It may be
followed by a number, to indicate its ‘series’. When a contiguous block in a given $eries
encountered, it is always held over to the next page if there is already a block in that series being
held over, even if it would fit on the current page. If no number is given, series 1 is used.

In the standard styles, tables and figures are implemented as contiguous blocksrémtdderies.
Thus the tables and figures in a document will alwagpear in the order in which they ocaar
the input, but if a table is being held over to the next page, it does not prevent a smalfréigure
being printed on the current page.

Contiguous can also be followed by the word ‘inline’. This ensures that the block is printed in
sequence with the text which it is embedded, a new page being started if necesRaisfeature
is used by the&lisplay macro in the standard styles.

Finally, contiguous can also be followed by the word ‘novstretch’. This disables veical
stretching of lines in the contiguous block, and means they will always be spaced by the current
linedepth. Without it, the lines may end up further apart as a result of vertical stretching.

It is normally preferable to use one of the standard maciigpldy, figure, or table) ratherthan
the contiguous built-in directive, since they provide additional features sashsaving the environ-
ment and adding space at the top and bottom of the contiguous text.

21.10 Control

This directive must be followed by a string in quotes. It is output in the GCODE as ‘morigol
information’. When the ultimate destination is a PostScript printer, the string is taken as a line of
raw PostScript to be included in the output at the relevant point.

When control appears at the start of a document, it may be intended as part of the ‘setup’
informtion for the document, or it may be intended to appear at the head of the first page. In the
latter case, it should be preceded.éydsetup (see section 21.16).

The directivelongcontrol (section 21.40) is more convenient th@mtrol when there are a number
of lines of control information to be output.

21.11 Ceset

This directive behaves like theet directive (section 21.66), except that it takes an additional
argument expression, and the variable is set only if that expression evaluates to ‘true’. For example,

.cseta (~~b > 6) "string"

sets the variable ‘a’ to the value ‘string’ only if the contents of the variable ‘b’ are a string
representing a number greater than 6. One special use is in setting a variable if it is notsalready

.cset b (Iset b) < some expression>
The action ofcset can be entirely duplicated usimig but it is more compact.

21.12 Cspace

This directiveis like thespace directive (section 21.68), except that it outputs the spaceibtiig
current position is not at the top of a page. (Howeifethe galley option is set, this top-of-page
test is not applied.) In additiothe dimension given specifies a minimum amount of space which is
required above the new current point. Tltggace ensures, rather than outputs, a given amount of
space.

If the previous item to be added to the page was a negative (upwards) amount of space, then
cspace inserts no space.

Cspace can be used at the start of a contiguous block, in which case it causes space to be generated
only if the block is printed other than at the top of a page (except in galley mode).

Basic directives 63

21.13 Disable

This directive switche®ff a number of optional processing features. It must be followed bybne
the following words:

emphasis emphasizing output lines

filling filling of output lines by joining input
flags interpretation of non-directive flags
formfeed use of formfeed characters in plain output
galley galley-style output

hyphenation automatic hyphenation

kerns processing of kerns

ligatures processing of ligatures

paradjust retrospective paragraph adjustment
splitfoottext splitting of foot texts

vstretch vertical stretching of pages

With the exception of the line emphasis, galley, and split foot text options, all these optiams are
by default. The state of theertical stretching option is kept in the global environment; the aest
in the local environment and can therefore be preservgaighyandpop.

Theflags option affects only text lines; the insert flag is always interpreted in directive lines.

The galley option changes the way SGCAL works in a number of places. Details are given in
section 10.14. It is intended mainly for use when preparing online documentation.

The hyphenation option can also be disabled by means of tiobyphen flag (section 20.28).
Details of hyphenation are given in chapter 23.

The paradjust option allows SGCAL to re-consider a paragraph after it has split it up into lines
according to how much text can fit on each line. If there is a very ‘loose’ line that is prdpeded
very ‘tight’ line, and the ‘tight’ line ends with one or more short words, SGCAL tries moving some
of the short words onto the next line to see if this gives a more balanced distribution ofandrds
spaces. It is unlikely that you will ever want to turn this featoife the facility is providedmainly

for testing.

The option for splitting foot texts is normally controlled via ty#itfootnotes macro (seechap-
ter 16).

21.14 Emphasis

This directivemust be followed by a list of horizontal positions in a line at which ‘emphasis bars’
are to be printed when emphasizing output lines is switchedlypically one or more values
slightly greaterthan the line length are given, but negative values are permitted, to generate
emphasis bars to the left of the text. The standard styles set up suitable default positions.

21.15 Enable
This directive is the complement dfsable and takes the samegaments.

21.16 Endsetup

This directive forces an end to the setup section of the SGCAL input, which othéewigeates
only when a non-empty text line is encountered. It is useful for forcomgrol directives to be
treated as part of the first page instead of part of the setup.

21.17 Error

The rest of the input line is output to the standard error stream, preceded by the text **Error’, and
SGCAL reflects the current input position, as it does for internal errors. The return code is set as
for an internal error

64 Basic directives

21.18 Flag

This directive is used for defining the strings which are to be recognized as flags. It is fatlpwed
the string to be defined (not in quotes) and then either the name of an in-built flag, or by one or
two strings in quotes which are to replace the flag whenever it is encountered. For example,

flag ~~ insert
flag $push push
flag $it{ "$pushsf2"
flag _ "$su" "$pu”

The in-built flag names are given in chapter Bagqc flags). Flagsmay be re-defined, buhis
causes a warning message unlesscémeelflag directive has been used first. Several different flag
strings may have the same interpretation.

When a flag is defined with a replacement string, then that string is itself scanned for flags when it
is inserted into a line. Howevea flag instance cannot begin in such an inserted string and continue
in the main part of the line.

For example, with the definitions above, when a line contaifit{g5} is scanned, thstring
$it{ is replaced byspush$f2 . This is then re-scanned, agush and $f are recognizeds
flags. Thelatter must be followed by a font number; in this case the number is 2. Théh&ict
there is another digit (4) following in the input line does not causeathement to become 24,
because scanning of flags and their arguments stops at the end of a replacement string.

When a flag is defined with two replacement strings, they are used alternately. Thus, uBimaj the
example above, the firsime an underscore is encountered, it is replacefisoy, the next timeby
$pu, the third time bydsu, and so on.

21.19 Font

This directive must be followed by rmumber It causes a new font to be selected. If the current font
group is zero, the number is interpreted as an absolute font number; otherwise it is intapiated
index into the list of fonts in the current group.

21.20 Fontgroup

This directive defines a font group, or specifies a change of the current font group. If it is followed
by asingle number, that must be the number of a defined font group, or zero, and it becomes the
current font group.

Otherwise itmust be followed by at least two numbers, with an equals sign after the first, iwhich
the number of the font group being defined. The rest are a list of fonts in that group. Thésorder
important, as fonts are selected from groups by indexing into this defined list.

Here is an example of the use of font groups, taken from one of the standard styles:

fontgroup1=0 1 2 3
fontgroup2=10 11 12 13
flag $rm{ "$push$f0”

flag $it{ "$push$fl”

flag $sl{ "$pushsf2"

flag $bf{ "$push$f3"

The flag for italic text, for example, is defined so as to select font number one frocurthat

group. When group 1 is current, it is actually absolute font number 1 that is selected, but when
group 2 is current, it is font number 11. The standard PostScript styles make use of three font
groups:

1 used for normal text
2 used for footnotes — smaller in size
3 used for chapter headingslafger in size

The nine standard fonts are defined in each of these groups.

Basic directives 65

Note thatfont group zero is special and is always available. It does not need to be, and indeed,
cannot be, defined. Selecting a font when font group zero is current always selects by &bygolute
number.

21.21 Foot

This directive is used for defining foot lines. The lines between it and the direxiifeot are
saved up and obeyed at the foot of each page. If the resultingstéotd deep for the foospace,
lines at its beginning are removed; if it is not deep enough, blank space is inserted at its beginning.

The processingf foot lines is exactly the same as for normal text lines. They may be filled and
justified as required. See altmtenv below.

21.22 Footdepth

This directive, which must be followed by a dimension expression, specifies the amount chtspace
the bottom of each page which is set aside for the printing of foot lines.

21.23 Footenv

This directivecauses a copy of the current environment to be made. This is reinstated as the current
environment whenever foot lines are to be processed. The foot lines may make changes to their
environment, but these are abandoned at the end of foot line processing.

21.24 Foottext

This directive is the basic one that is used infdaenote macro. It causes the lines betweeant

the directiveendtext to be saved up and (normally) printed at the bottom of the page on which the
current outputine is printed. Users should usually use thetnote macro, which handles things
like change of type size and automatic numbering, rather than calbttgxt directly.

The savetexts directive canbe used to cause footnotes to be saved up for printing later in the
document, for example, at the end of ttieapter When the galley option is on, footnotes are
automatically saved until the end of the document.

21.25 Format

This directivespecifies the format in which a user variable is to be printed. It is followed by the
name of an existing variable (i.e. one that has previously been set), and one of the words

roman lower case Roman numerals
ROMAN upper case Roman numerals
alpha lower case letter ‘numerals’
ALPHA upper case letter ‘numerals’
arabic arabic numerals

indirect specifies an indirect variable

The Roman and ‘alphabetic’ numerals apply only if the contents of the variable are a digitnstring

a suitable format. For Roman numerals the string must represent a whole number in the range
1-9999,while for ‘alphabetic’ numerals the string must represent a whole number in the range
1-26.

If the contents of a variable are not suitable for insertion in the specified numerical format, they are
inserted asa text string without modification. For example, if the following directives have been
obeyed:

.seta 1991
.setb5

.setc -43

format a ROMAN
.format b alpha
format c roman

66 Basic directives

Then the effects of inserting the three variables would be:

~~a yields MCMXCI
~~b yields e
~~C yields -43

When an variable whose format is ‘indirect’ is inserted into a line, the contents of the variable are
taken as the name of a second variable, which is substituted for the original variable. It may have
any format, and may itself be an indirect variable. To guard against infinite loops, indirections may
be no more than 10 deep. If the variable named in an indirect variable does not exist, & error
generated.

21.26 Graphcolour

This directive defines the colour of graphics items — lines, curves, and filled shapes. It Hastno ef
on text.It is followed by three real numbers that specify the red, green, and blue components of the
colour, respectively. Their values must be between 0 and 1. For example,

.graphcolour 1 0 0.5

sets aot of red and a little blue. Note that the only way of changing the colour of graphicsis by
directive. There is no flag (as there is for text).

21.27 Graphgrey

This is a convenience directive sets a grey colour for graphics items. It takes a single real number
argument, witha value between 0 and 1, and is equivalergréphcolour with three aguments of
the same value.

21.28 Head

This directive is used for defining head lines. The lines between it and the diredivead are
saved upand obeyed at the head of each page. If the resulting text is too deep for the head space,
lines at its end are removed; if it is too shallow, blanks space is inserted at its end.

The processing of hedthes is exactly the same as for normal text lines. They may be filled and
justified as required. See alseadenv below.

21.29 Headdepth

This directive, which must be followed by a dimension expression, specifies the amount chtspace
the top of each page which is set aside for the printing of head lines.

21.30 Headenv

This directivecauses a copy of the current environment to be made. This is reinstated as the current
environment whenever head lines are to be processed. The head lines may make changes to their
environment, but these are abandoned at the end of head line processing.

2131 If

This is SGCALs conditionaldirective, which must be followed by an expression which evaluates
to a numerical value. A value of zero is takerfahse; any other value i ue.

If the value istrue, theinput lines betweeif and the nex#lif, else, or fi are obeyedand thereafter
any lines up tdi are skipped.

If the value isfalse, lines up toelse, €if, or fi are skipped. If the terminator Bse, then lines
following it up to fi are obeyed; if it islif then another condition must appear. This is tested as
before.

While skipping lines, nested directives arecorrectly handled, and macro directives axpanded,
except when a macro is already active (to allow recursive macros to be written). This allows a

Basic directives 67

conditional section to begin in one macro and finistamother However no flags are processed in
skipped lines.

As an example of the use if here are the first few lines of the source of this document:

.if Iset style
.set typeface "Palatino”
.set typespacing 11

Jibrary "a5ps"
fi

.if ~~sys.fancy
flag \ "$bf{" "}"
.else

flag\"_ """
fi

If the style has not been set on the command line (which would have resulted in deialye
placed in the variablatyle) then the ‘abps’ style is chosen, with a particular typeface and line
spacing. Then the flag string consisting of a backslash character is defined; its definition depends on
whether the document is being processed for lineprinter (‘plain’) output, or for some other device
(fancy’ output).

21.32 Include

This directive must be followed by a string in quotes. It is taken as the name of a file witch is
be included in the input at the point whenelude appears. See alsibrary (section 21.37).

21.33 Indent

This directive must be followed by a positive or negative dimension expression. It alters the
indentation of the outputndent does not of itself cause a line break in the output, and it is obeyed
synchronously with the input text, taking effect from the next output line.

When an indent is set, it is possible to cause a line to start to the left of the indent by specifying a
space with a negative width, or by using a tab whose position is less than the indent. The
tempindent directive (section 21.71) caaso be used to cause a given number of lines to start to
the left of the current indent.

When positioned to the left of the current indent (by any of the above meansg)ddhietab flag
can be used to move the current point to the current indent position (see section 20.22).

21.34 Index

The remaindeof the line is taken as text to be output to the file defined byirtdex keyword on
the SGCAL command line. The text is remembered with the current output line, and whimethat
is allocated to a page, the relevant page number is added to the index text before it islfamiten.
index file is defined, a single warning message is output.

If anindex directive appears before the first line of any text at the start of the file, the output to the
index file does not contain a page numbHris is useful for generating index entries of foem
‘disc, see disK.

21.35 Inserttexts

When footnotes (selottext) are not being printed at the bottom of each page, but are being saved
up (seesavetexts), this directive causes any that have been saved to be printed at the bottom of the
current page.

68 Basic directives

21.36 Justify
This directive controls the formatting of output lines, and must be followed by one of the words

left left justification (‘ragged right’)
right right justification (‘ragged left’)
both both left and right justification
bothR both left and right justification
centre centre justification — all lines are centred

The defaultsetting is ‘both’. Thedifference between ‘both’ and ‘bothR’ is that, when the latter is
selected, short lines at the ends of paragraphs are right-justified instead of left-justified.

Justification isndependent of line filling. If line filling is disabled when justification is set to ‘both’
or ‘bothR’, every input line will be stretched to form an output line.

In modesother than ‘both’ or ‘bothR’, no stretching is done, whether or not line filling is in force
(but sedooseness below).

21.37 Library

This directive is similary tanclude, but it takes its argument (a string in quotes) as the narae of
member of the standalirary. The translation othe library name to an actual file name depends
on the operating system under which SGCAL is running. The main userafy is for selectinga
standard style. For example,

Jibrary "a4ps"

should appear at the start of a document that is to be formatted for A4 pages on a PostScript
device. (A style can also be selected by a keyword on the command line.)

21.38 Linedepth

This directive sets the current line depth to the value ofamgiment, which is a dimension
expression. It does not cause a line break. If it occurs in the middle of a paragraph, the entire
paragraph idormatted at the new depth. The program’s default is 12 points, but some standard
styles change this.

21.39 Linelength

This directive sets the current line length to the value of its argument, whichdisiension
expression. It does n@ause a line break. If it occurs in the middle of a paragraph, theargth

is applied to the next complete output line which follows this directive. The program’s default
length is 390 points, but the standard styles may change this.

21.40 L ongcontrol

This directive provides a shorthand for a successioctowetrol directives (see section 21.10). Each
line between it ané@ndlc is treated as though it were enclosed in quotes and preced=uhtogl,
unless the line starts with a macro directive, in which case the macro is expdaodadoid this
expansion, the quote flag can be used.

Note that,as would be the case with a sequenceootrol directives, the insert flag is recognized
in the data lines, unless switched off by thsable directive.

21.41 L ooseness

When a paragraph is formatted, the width of each stretchable space is multiplietbdmeress

factor before the paragraph is broken into lines. The default looseness factor is unitgtirétise

is provided to alter the current looseness, which is kept in the local environment and so can be
preserved byush andpop. The argument is a numeric expression. Multiplication of space widths
by the looseness factor is independent of the justification mode.

Basic directives 69

Occasionally a value slightly greater than one can cause a paragraph to take up one mthranline
it otherwise would, which may help to improve the appearance of a page. Simdlarblue less
than one can be used to make a ‘tight’ paragraptuésg outside the range of around 0.8.16 do
not generally result in acceptable paragraphs.

21.42 Macro

This directive is used to define macros. It must be followed by a macro name and a number of
prototypical arguments which are strings separated by spaces. If a string includes spacedet must
enclosed in double quotes.

The lines between thmacro and endm directives are read and saved up. Each time the macro is
called these lines are obeyed as SGCAL input lines. Within the macro, the insert flag can be used
immediately preceding a sequence of digits to insert a macro argumegumént numberstart

from one. As an example, here is the definition oftifamk macro from the standard styles:

.macro blank 1 ™"

.newline

Af "~~2" ="line" | "~~2" = "lines"

.cspace ~~11d

.else

.cspace (~~1*~~typespacing/2) round ~~sys.vresolution
fi

.endm

When a macro is called, isguments are given in the same format as when it is defevazbpt
that the final ayjument neechot be delimited by quotes, even if it does contain spaces. Maaros
be calledrecursively, and macros can be defined within macros. If a macro is re-defimadireg
is issued.

Macros are expanded input which is being skipped as a result of theirective, and in portions

of the input which are being collected for separate processing as a result of the dissntiees

call, orlongcontrol. However in such circumstances, macros are never expanded recurSikaty

is, if a macro is found to be already active, it is only expanded again if it is encountered as a
normal input line.

21.43 Multicolumn

When generating GCODE output, SGCAL is capable of producing more than one column on a
page. This directive specifies the number of columns required. Its argument iisteger
expression. When it is obeyed, it causes the current line length to be reset appropriately

SGCAL cannot handle a change of number of columns in the middle of a page, except in the
special case of going from one columnrtore than one column. In other cases, a new page is
always forced.

When processing multiple columnsach column is treated as a ‘mini-page’ as far asvén@bles
which contain such things as space used and space left are concerned. Contiguqued#ssing
is also done on a per-column basis.

Users should normally use tleelumns macro instead of obeying this directive directly. Ndtat
it is not available for lineprinter output.

21.44 Newcolumn

This directive forces subsequent output to be at the top of a new column. If the current column is
the last one on the page, it has the same effantvegage.

70 Basic directives

21.45 Newline

This directive forces dine break in the output. If it is followed by the word ‘justify’ themy
previous part line that it causes to be output is justified both left and right. This can be useful for
special effects, since the last line of a paragraph is not normally fully justified (even if ‘justify
both’ is set). It is not necessary to usewline with the justify option when the previous line
contains oneor more extra-stretchy spaces, since their presence automatically causes thédine to
justified.

21.46 Newpage

This directive forces subsequent output to be at the top of a new page. If called several times it
does not generate blank pages. (If this is requispdce should be used to generate sobtenk
space on each page.)

When verticalstretching of pages is in force, pages are stretched only if they are fairly full. It is
possible to force a page to be stretched in all circumstances by followingpihpage directive
with the word ‘vstretch’.

21.47 Newpar

This directiveforces a line break in the output and then outputs an amount of vertical sphite
defined by thepar space directive. Note that a blank line in the input is equivalemewpar.

21.48 Nosep

This directive causes the next text line to be joined onto the current paragraph beirvgtbaiit

the insertionof any separating spaces. When line filling is enabled, it has the effect of suppressing
the insertion of a space between one line and the next. When filling is not enabled, it provides a
way of joining two input lines together

Note thatnosep affects the nextext line processedintervening directive lines are not affected. It
may appear at the end of a macro to cause a text line that follows the macro to be joinad onto
text line within the macro. Its behaviour is thus different from that of the join flag.

21.49 Page

This directive sets the current page numlvdrich is held in the system variablys.pagenumber
and automaticallyincremented whenever SGCAL starts a new page. gansnt isan integer
expression.

21.50 Pagedepth

This directive sets the total depth of the output pages, including the space for head and foot lines.
Its argument is a dimension expression.

21.51 Pagerequest

This directive is similar to theequest directive (see below), except that thequest isepeatedly
obeyed at the top of each output page (including the current page).

21.52 Pagexoffset

This directive sets a horizontaffset for the placing of output pages on the paperatjesment isa
dimension expressioiit must appear at the head of the input, before any text lines are encountered.
By default, output normally starts one inch in from the left hand side of the page, so the horizontal
page ofset is relative to this. It may be positive or negative. Multiple occurrencemgexoffset

are cumulative.

If the pagexoffset directive is given with two arguments, they are taken as the horizoméat of
dimensions for verso (left-hand) and recto (right-hand) pagspectively This feature operates for

Basic directives 71

fancy output only; for plain output the secoagjument is ignored and all pages have the same
offset.

21.53 Pageyoffset

This directivesets a vertical offset for the placing of output pages on the papemgitsent is a
dimension expression. It must appear at the head of the input, before any text lines are encountered.
By default, output normally starts one inch down from the top of the page, so the vertical page
offset is relative to this. It may be positive (to move further down) or negative (to move up).
Multiple occurrences gbageyoffset are cumulative.

21.54 Parindent

This directivesets the standard indentation to be used at the start of paragraphs. Its argument is a
dimension expression More specifically, whenexr®tpar is obeyed, this value is set aptomati-
cally as atempindent (see section 21.71) for one line. The default paragraph indent is zero.

21.55 Par space

This directivespecifies the amount of vertical space to appear between paragraghgurtent is

a dimension expression. More specifically, this amount of space is output (conditionally) after an
endpar directive has resulted in the outputting of a non-null paragraph. The pregceafault

value is 12 points, but the standard styles change this.

21.56 Pop

This directive is used to restore a previous set of local environment values from the environment
stack. There are three forms:

-Pop

.pop < letter>

.pop *
The first reverts to the most recent set of values on the stack, provided that thiariergmous
set. Thesecond form reverts to the set of values preceding the most recent set that is identified by
the givenletter The final form reverts to the set of values at the bottom of the stablt-is, it
goes all the way back to ‘top level'. In the last two cases, a warning message is output if
intermediate frames are discarded.

21.57 Push

This directive pushes the current values of the local environment onto the environmenT lséaek.
are two forms:

.push
.push < letter>

If push is followed by a letter, the pushed set of values is identified by that letter; otherwise it is
anonymous. An identified set cannot be popped by a calbpowithout the matchingdentifier,
whereas a call tpop with an identifier skips over intervening anonymous sets. This provides a
means of recovery from user errors in nesting pushes and pops.

21.58 Request

This directive must be followed by a string in quotes. It generates a request to the program which
is to process the GCODE produced by SGCAL. By convention, the string starts witbrda
terminated by a colon which identifies which processing program is to take note of the request. At
present, only ‘PostScript:’ is relevant; this enables various options to be passed directly to the
sgtops program. The standard PostScript styles make use offabilty, but it should rarely be
needed by ordinary users.

72 Basic directives

See also theagerequest directive, which specifies requests that happen at the top of each output
page.

21.59 Rset

This directive works likeset in that it sets a value for a variable. However,sdt is used, SGCAL
assumes that the variable is a reference to some other place in the document, which might be a
forward reference. See section 9.2 for a discussion of forward reference handling. At the end of a
run, anyvariables that were set usimget are output to the file defined by thesetout command

line option. Once a variable has been set ussat it cannot subsequently be reset to dedént

value.

21.60 Resolution

This directive specifies the resolution of the output device, in points. It is followed by two
dimension expressions giving the horizontal and vertical resolution respectivedyprograms
default is 6 points horizontally and 12 points vertically (suitable for plain output).

21.61 Rulecolour

This directive is a synonym fographcolour and is provided to match theulegrey directive,
which has existed for a long time.

21.62 Ruledash

This directive sets parameters for the drawing of dashed lines. There are two forms. Totkpecify
subsequent rules and curves are to be drawn dashed, two non-zero dimension expressions must be
specified. The first gives the length of each dash, and the second the length of the gaps between
dashes. For example,

@.ruledash 4.55.1

To specify that subsequent rules and curves are to be drawn solid, a single dimension expression
whose value is zero must be specified.

21.63 Rulegrey

This directive is a synonym fagraphgrey, which it predates. Originally it applied only ruldsjt
now it applies to all graphics.

21.64 Rulewidth

This directive specifies the thickness of subsequent rules as a dimension expression. The default is
0.4 points.

21.65 Savetexts

This directive, which has namguments, specifies that foot texts (footnotes) are to be saved up
instead of being automatically printed at the bottom of each page. Instead, they are inserted when
theinserttexts directive is encountered.

21.66 Set

This directive sets the values of user variables. It must be followed by a variable nanam and
expression. The expression is evaluated and the result is converted into the form of a string, which
is then stored in the variable. For example:

.set displayindent 2 em

.set ps "PostScript”

.set oldindent ~~sys.indent

.set reference "~~chapter.~~section"

Basic directives 73

See also theset directive in section 2111

21.67 Showhyphens

The remainder of the input line following tlshowhyphens directive is a list of words separated

by spacesEach is processed by SGCAlautomatic hyphenation routine, and the result is output to
the verification file. This provides a means of checking whether SGCAL is capable of hyphenating
particular words. Theghytest command provides another way of doing this.

21.68 Space

This directiveoutputs vertical white space; the amount is specified by its argument, which may be a
positive or negative dimension expression. There is no default, and so a value must be theen. If
space causes the current point toafiothe end of the page, no further space is output astag

of the next page.

21.69 Stop
This directive causes SGCAL to stop processing without reading any further input.

21.70 Tabset
This directive is used for setting tab stops. It must be followed by a list of dimension expressions.
By default, these are relative to one another. For example,

.tabset 30 10 10 10

sets tab positions 30, 40, 50, and 60 points in from the left hangirm&epeateddentical values
can be specified by giving a repeat count and the letter 'x’. The above example ould
changed to

.tabset 30 3x10

If a value is followed by the letter ‘a’, it is taken as an absolute position instead of relative to the
previous stop.

The dimensiongan also be followed by one of the letters ‘', ‘c’, ‘o, indicating a left-justified,
centred, or right-justified tab stop respectively. The absence of a letter is equivalent to ‘I'. For
example:

.tabset 10em 15em r 60.5

Tab flags in the input are processed when paragraphs are being split up into output lines. If a tab is
encountered anthere are no further tab stops to the right of the current position in the dogut
an error message is generated and the tab flag is ignored.

21.71 Tempindent
This directive sets a temporary indent which lasts for a given number of lines (defaélorl).
example,

.tempindent 24 3

sets a temporary indent of 24 points which lasts for the next three lines. The first argument is a
dimension expression, and the second an integer expression.

Tempindent does not cause a line bredk.encountered in the middle of a paragraph, tesv
indent applies to the next complete output line. Note that didpar directive sets upnew
temporary indent parameters, but these can be overriddgenipindent. Unlike the permanent
indent, the temporary indent value is not part of the local environment.

74 Basic directives

21.72 Templinelength

This directive sets up a temporary line length in similar way teapindent sets up g&emporary
indent.

21.73 Textcolour

This directive sets the colour of subsequent text. It must be followed by three real numbers in the
range 0 to 1, which specify the red, green, and blue components of the colour, respectively. The
numbers must be separated by spaces or commas. The text colour can also be changed by the
‘colour’ flag.

21.74 Textgrey

This directive is followed by a single argument that sets a greylevel for subsequent text. It is a
convenience directive, and is a synonymtixtcolour with three identical guments.

21.75 Warning

The rest of the input line is output to the verification output, preceded by “**Warning’. SGCAL
then reflects the current input line as for an internal warning, and sets the qetigr@ppropriately

Basic directives 75

22. System variables

This chapter contains a list of all the available system variables. Those that contain numbers cause
strings without decimal points to be inserted when the fractional part is zero. Minus signs are used
for negative numbers; nothing precedes a non-negative number

Certain system variables such ss.usedonpage, sys.leftonpage, andsys.usedcontig, are updated

only whenSGCAL is forced to start a new line by a directive sucimexgine, newpar, newpage,

or space. Such a directive causes SGCAL to format the text it is holding in its paragraph buffer and
allocate it to a page. Any reference to these system variables should always be preceded by a call
to thenewline directive (or any other directive that forces a line break).

sys.caps
sys.colseparation
sys.columns

sys.contigpending

sys.contiguous
sys.date
sys.daynumber
sys.emphasize
sys.fancy
sys.filling
sys.font
sys.fontgroup
sys.footdepth
sys.foottext
sys.galley
sys.graphred
sys.graphgreen
sys.graphblue
sys.headdepth
sys.hresolution
sys.indent
sys.justify
sys.lastcontigdepth
sys.leftonpage
sys.linedepth
sys.linelength
sys.looseness
sys.minparB
sys.minparT
sys.monthname
sys.monthnumber
sys.pagedepth
sys.pagenumber
sys.pagexoffsetR

sys.pagexoffsetV

sys.pageyoffset
sys.parindent
sys.parspace
sys.returncode
sys.righttoleft
sys.rulewidth
sys.savetexts

System variables

true if upper case being forced
the column separation
the number of columns on the page
true if a contiguous block is
being held over
true when reading contiguous block
todays date
the day in the month
true if emphasizing
true if output is in GCODE
true if line filling is enabled
the current absolute font number
the current font group
the current foot depth
true if reading a foot text
true if in galley mode
the red component of the graphics colour
the green component of the graphics colour
the blue component of the graphics colour
the current head depth
the horizontal resolution
the current, non-temporary, indent
the current justify mode
the depth of the last contiguous block
the space left on the current page
the current line depth
the current, non-temporary, line length
the current looseness
the minparB parameter
the minpar T parameter
the name of the current month
the number of the current month
the current page depth
the current page number
the horizontal page fet
for right-hand (recto) pages
the horizontal page fet
for left-hand (verso) pages
the vertical page tdet
the paragraph indent
the paragraph space value
the current return code
true if outputting right-to-left
the width of the next rule
true if savetexts has been obeyed

sys.tabcount the number of tab stops set

sys.textred the red component of the text colour

sys.textgreen the green component of the text colour

sys.textblue the blue component of the text colour

sys.time the current time of day

sys.underline true if underlining

sys.usedcontig the amount of space used in a
contiguous section

sys.usedonpage amount of space used on current page

sys.vresolution the vertical resolution

sys.year the current year

The value insys.usedcontig excludes any conditional space that may exist at the statheof
contiguous sectiofwhich will be omitted if the section ends up at the top of a page). Footnotes are
a special kind of contiguous section, ayd.usedcontig can be used within them too.

The variablesys.pagexoffset also exists for backwards compatibility yields the same valuas
sys.pagexoffsetV.

System variables 77

23. Details of hyphenation

SGCAL attempts automatic hyphenation when it is splitting up a paragraph into linescante#
across a line which is verpose, that is, if the amount of unused space left over at the etigeof
line is large in comparison with the total amount of white space within the line.

Hyphenation is independent of justification, and can occur on left-justified, right-justified, and
centre-justified lines as well as on lines which are justified at both ends.

By default, SGCAL never hyphenates the last word of a paragraph, nor any word containing capital
letters. A part word at the end of a paragraph does not usually look nice, and nor does a sentence
starting with a hyphenated word; other words containing capitals may be acronyms orronapsr

which should not behyphenated. Howevethe forcehyphen flagan be used to requelyphen-

ation in these cases if required. For example,

The large $fh{ELEPHANT} was made of $fh{aluminium}.
The nohyphen flag can be used to suppress automatic hyphenation for particular words:
Do not $nh{hyphenate}!

The disable and enable directives can also be used to control this option. Disabling automatic
hyphenation does not stop hyphenation at explicit or discretionary hyphens.

To prevent hyphenation at an explicit hyphen, it should be preceded by the quote flag. Note,
however that an explicit hyphen is in any case recognized as such only if it is preceded and
followed by a letter

Before attempting to hyphenate a word (which in this sense is any string of characters dbiimited
white space), SGCAL ‘cleans’ it by removing all non-letters at the beginning and at the end, and
also the sequence ‘apostrophe s’ from the end if it is present.

SGCAL then attempts to ‘de-plural’ the word by means of the following rules:
« If the word is shorter than five characters, or does not end in ‘s’, de-pluralling fails.

« If the wordends in ‘es’, then if the ending is ‘shes’, ‘ches’, ‘sses’, or ‘oes’, remove ‘es’;
otherwise, unless the ending is ‘ices’, ‘eses’, or ‘ies’ remove ‘s’

+« |f the word does not end in ‘es’ then remove ‘s’ unless the word ends in ‘ss’, or ‘as’, ‘is’,
‘0s’, ‘us’ or ‘ys’ not preceded by another vowel.

If de-pluralling succeeds (i.e. if something is removed by the de-pluralling algorithm) then the
hyphenation dictionary is searched using the singular form of the word. If an entry is found, it is
used; otherwise another search is tried using the original (plural) form of the word. If de-pluralling
fails, then the dictionary is searched using only the original form of the word.

Hyphens are generated solely by reference to a hyphenation dictionary. They are not generated by
any form of algorithm. It is guaranteed that only those hyphenations that appear in the dictionary
can ever be generated. The current dictionary contains nearly 16,500 words.

The hyphenationdictionary is in principle just a file of hyphenated words, one to a line, in
alphabetical order (excluding the hyphens from the sorting process). However, so that S&CAL
search it quickly for any given word, it is used with an index of the first four letters of vildrids.
index is stored at the front of the file and copied into main store when SGCAL starts up. There is
an auxiliary program calledgbuildhy that reads a simple list of hyphenated words and writes a
copy of the list with the index on the front. See section 29.1 for details.

78 Details of hyphenation

24. Miscellaneous

This chapterdescribes a few miscellaneous features of SGCAL that need mentioning, but are not
covered elsewhere.

24.1 Kerning

Kerning refers to the adjustment of the space between individual pairs of letters, to obtain nicer
looking output. Compare, for example WAAUL' (kerned) and ‘AWFUL (unkerned). Inthe kerned
version, the space between ‘A and ‘W’ has been narrowed. Kerning information is contained font
metric tables, and the user need take no action to obtain its benefits.

24.2 Vertical spreading

SGCAL savewup an entire page in store before outputting any of it. If the page is reaséumgbly

it stretches it vertically by increasing all the line depths very slightly, so that the bottom line is
exactly atthe page depth. This gives much nicer looking pages. Vertical spreading can be disabled
using thedisable directive. Itcan also be independently disabled for individual contiguous sections
using the ‘novstretch’ keyword on tleentiguous directive.

24.3 Flag handling

SGCAL scans directive lines for the insert flag only. Other flags are recognized only in text lines,
and what is more, text lines are processed for inserts before they are scanned for othér flags.
effect, SGCAL recognizes the insert flag as a means of operating on the input lines, and the other
flags as the main markup which controls the format of the output.

24.4 Rules and other lines

SGCAL has built-in support for rules (horizontal, vertical, and sloping lines), making it possible to
set up boxed charactstrings entirely within SGCAL, and also to generate boxes for figetes,

As the width and colour of the lines are controllable, the rule feature can be used for generating
coloured background rectangles.

SGCAL also supports the drawing of curved lines in the form of Bezier curves, on output devices
where this is possible (via PostScript). It is possible to write preprocessors for SGCAhatteit
possible to include simple line art within SGCAL input files, and indeed one such preprocessor
called Aspic, has been implemented. It is distributed separately, because it can generate
Encapsulated PostScript and Scalable Vector Graphics as well as input for SGCAL.

24.5 Widow and orphan lines

A ‘widow’ line is the final line of a paragraph that appears on its own at the top of a page. An
‘orphan’ line is the first line of a paragraph that appears as the last line at the bottom of a page.
SGCAL avoids generating orphan lines and widow lines (except for paragraphs that consist of one
line only).

24.6 Paragraph ends

SGCAL avoids putting a short word on a line by itself at the end of a paragraph. It also never
automatically hyphenates the final word of a paragraph.

Miscellaneous 79

25. Format of level 4 GCODE

SGCAL produces level 4 GCODE (previous versions were use8GQALs predecesspGCAL).

25.1 General format

GCODE is a character stream code; line and record boundaries are irrelevant and ignored. It is
recommended that there be no more than 72 characters per line, to avoid potential problems when
transfering GCODHiles betweendifferent systems. The space character is not useédd@DE

(except possibly in the GCODE heading text), in order to avoid trailing space trunpatiolems

if GCODE files are copied using text-oriented utilities.

Logically, a GCODE stream consists of printing characters and control sequences, which afiay be
fixed or varying lengthas defined in the following sections. Howevdris logical structureis
encoded using printing characters only. This makes it easy to translate from one character code to
another and also avoids potential difficulties when transmitting GCODE files across networks.

One printing character, the backslash')(is chosen as an escape character for introducing control
sequences. If a backslash character is required as data, it is encoded as the control ‘s&duence
The more obvious encoding of\ *’ is avoided, as this gives rise to ambiguities which make it
difficult to process the GCODE without parsing it sequentially

There is a solitary exception to the use of printing characters. The very first character in a GCODE
file is a backspace. This makes it possible to distinguish GCODE files automatically under normal
circumstances, and it also makes concatenations of GCODE files detectable. (Howewemnethie
version ofsgtops does not support concatenated GCODE files.)

25.2 Coordinate system

The GCODE coordinate systehas its origin at a point one inch in from the left, and one inch
down from the top of the page, by default. This is the ‘current point’ at the start of a new page; it
is the left-hand end of the baseline for the top line on the page. Almost all movements are relative
to the current point. There are control sequences to alter the ‘page offset’, and these ket the

of moving the origin.

25.3 Control sequences

Two kinds of controlsequence are used in GCODE. The fixed-length control sequences consist of a
backslash character followed by one other character

The variable-length control sequences are followed by an argument which is a deamizdy
possibly containing a decimal point and fractional part. Tlyginaent isterminated by one of a
number of special characters which determine the identity of the control sequence.

As record boundaries are not significant, it is possible for a newline to appear between the
backslash and the following character, or anywhere in the middle of a control sequence.

25.4 Introductory control sequence

The control sequence whiappears at the start of a GCODE file consists of a backsjecacter
followed by a digit identifying the version of GCODE being used. The character for the version
described inthis document is ‘4’. This is the only use of backspace (or any other non-printing
character) in GCODE.

The GCODEproper starts with the first backslash character following the version number. Any
other characters may appear before it, allowing identifying information to be included filethe
SGCAL puts the text

GCODE file written by SGCAL < version> (< style>)
on < date> at< time>

80 Format of level 4 GCODE

between the GCODE version number and the first backslash.

25.5 Control sequences without arguments
The following control sequences are of fixed length and havegumants:

\& include a backslash as a data character
\f start/end a filled shape

\F begin a new page

\N begin a new line

\n next footnote number

\o reset footnote number

The depth of line must be set before the uséNbf and between it and the start of the néme,

control sequences such ¥s (new page) oii< n>) (global move down) mawgppear The startof

the next line is indicated by the appearance of a printing character or a control sequence pertaining
to an individual line (local move left, right, up, or down).

The\f sequence should always appears as a pair. Between the two occurences, only sequences that
define lines or curves should normadippear The shape that is defined by the path they define is

filled with the current graphics colour. If any other type of item appears between instafices of

the result is undefined.

The\n and\o sequences are used by SGCAL when it is configured to reset footnote ndorbers
each pagelnstead of outputting an actual number, it outpats and at the start of each page and
the start of each footnote section, it outp\ds reset thefootnote numberThis approach isised
because SGCAL does not know which page a footnote will end up on at the time it geherates
The scheme works only if there are never more than nine footnotes on a page.

25.6 Control sequences with arguments

An escape characté€n ') followed by a decimal number, possibly including a decimal point, and
possibly preceded by a minus sign, is used to introduce a number of different variable-length
sequences of the form

\< n><t>

where > is the sequence of decimal digits etc. representing an argument value. When this value
is interpreted as a dimension, its units are points. The control sequence is terminated by one of a
number of charactersf>g which identify the control function required.

Separate control sequences for moving up, down, left, and right are provided, becauaeesthey
frequently used. The values of their arguments are always positive.

25.7 Control sequences before the first page

Certain controlsequences may appear only at the start of a GCODE file, before thprifitgig
page. This restriction makes it possible for a program that processes GCODE to skip pages very
rapidly. These control sequences are:

\< n>=<m>"< font name>"

This specifies a font binding for font numbemr>=<(a value in the range 0-99). Thgument >
specifies the size required for the font. It consists of decimal digits only and is in millipoints. By
convention, the font name is normally split into two parts, separated by a slash. The first identifies
a class of fonts, and the second a particular font within the group, for example

\22=15000"atl/Times-Roman"
Any given font must not be bound more than once. The bindings may appear in any order

\< n>H
\< N>V

Format of level 4 GCODE 81

These sequences specify a horizontal and vertical pdget,ofespectivelyfor every page in the
document. In effect, they move the default position of the origin of the coordinate sys$teim.
arguments may be positive or negative.

\< n>h

This specifies a horizontal pagefsgt for recto (right-hand) pages onlyo specify diferent ofsets
for verso and rectpages)< n>H should first be used to set the same value for both, then the value
for recto pages can be changed using>h.

25.8 Control sequences on pages

This section describes those control sequences that may only appear within the data for a given
page. A page starts with the sequeYice and this is always followed by two further sequences:

\< n>P

This specifies théogical page number for the page, as specified byptdge command t6SGCAL.
This makes it easidior programs that process SGCAL to access pages by lagicabey as well
as by their absolute position in the GCODE file.

\< n>C

This specifiesa column offset for subsequent output. At the start of a page the argument value is
always zero, but if there is more than one column on the page there will be subsequevithsalls
the page specifying different values. This parameter is in effect a local gage of

At the start of a page, there is always an explicit selection of a font, and an explicit settirey of
vertical spacing increment. Underlining is assumed twfheThis makes it possible fgorograms
that process the GCODE to skip pages simply by searching for instanéesmthe file.

The following control sequences are used within pages to control the printing of characters, rules,
and Bezier curves:

\< n>X

This specifies a horizontal movement to the absolute x-coordinate given by the argument. The
current y-coordinate is unaltered. This is the only non-relative movement specified in GCQDE. It
used by SGCAL to move to positions for printing emphasis bars.

\< n>>

This specifies a relative horizontal movement to the right. Its argument is always positive. It is used
for tabs and spaces within lines.

\< n><
This specifies a relative horizontal movement to the left. Its argument is always positive.
\< n>$

This specifies a relative vertical movement down the page, and local to the current line. It is used
for subscript/superscript handling, and its argument is always positive.

\< n>%

This specifiesaa relative vertical movement up the page, and local to the current line. It is used for
subscript/superscript handling, and its argument is always positive.

\< n>)

This specifiesa global relative vertical movement down the page. It is used for page fillinthend
SGCAL space directive, and appears only between lines. Its argument is always positive.

\< n>(

This specifiesa global relative vertical movement up the pageaitgiment is always positiveand
it appears only between lines. It is used for the SGG@pdce directive when it has a negative
argument, and also for re-positioning to the top of a new column in multi-column output.

82 Format of level 4 GCODE

\< n>!

This specifies the vertical spacing increment, that is, the vertical distance between successive lines
on the page, which is the amount of downward movement that takes place whkignséguence is
obeyed. This sequence is always output before the first occurrekieoof a new page.

\<n>_

This specifies whether succeeding characters are to be underlined or not. The argument is either O
for no underlining, or 1 for underlining. Underlining is always considered to batdhe start ofa
new page.

\< n>:
Selects font numberr for succeeding printing characters.
\< n>/

This specifies that character number> is to be output from the current font. It is used for
characters that are not in the normal printing set. SGCAL font encodings are based on the Ascii
character set.

\< n>G
\< n>b
\< n>g
\< n>r

These settings control the colour of subsequent text or grap@icsets all three colour com-
ponents tathe same value, that is, it sets black, white, or a shade of grey. The other three change
the individual red, green, and blue colour components.

\<n>T

This specifiesthe thickness of subsequent rules and Bezier curves. SGCAL always outputs an
explicit thickness for each rule and Bezier curve that it generates.

< >\ m>l

This sequence specifies a dash pattern for the next rule or anigelhe first number gives the
length of the dashes, and the second the length of the spaces.

\< N>R
\< n>U

This requests that a horizontal or vertical rule, respectively, be drawn. The argumenthich
may be negative, specifies the lengfithe rule. For vertical rules, positive is upwards. The current
point moves to the end of the rule.

\< Nn>S\< m>S

This sequence requests that a sloping rule be drawn.aueents specify the horizonal and
vertical dimensions of the rule, respectively, and may be negative. The current point moves to the
end of the rule.

\< x1>Q\< y1>0Q\< x2>Q\< y2>0Q\< x3>Q\< y3>Q

This sequence requests that a Bezier curve be drawn from the current point to a point whose
position relative to the current point {8x3>,<y3>). The intermediate pairs of numbers give the
coordinates of the Bezier control points, again relative to the current point. The thickness and
greyness othe curve are controlled in the same way as for rules. The current point moves to the
end of the curve.

25.9 Control and request strings
The control sequence

\D< characters>\D

Format of level 4 GCODE 83

represents a device control string, which is intended as an escape mechanism for controlling
devices not handled by the existing facilities. It is generated as a result of obeyifg@relL
directive control. Whensgtops is used to process GCODE, control strings are interpretéadiaes
PostScript.

The control sequence
\A< characters>\A

is usedas a general mechanism for passing information to programs that interpret GCODE. 1t is
generated as a result of obeying tlequest directive in SGCAL. By convention the text starts with
a device name terminated by a colon. For example:

\APostScript:landscape\A

is an instruction tegtops to output in landscape format. Processors that do not recognize the initial
name should ignore the request sequence.

If the backslash character is required as part of a ‘control’ or ‘request’ string, it apped&s. &s °
fact, backslash is alsosed at a higher level as an escape for certain special characters within the
string, as follows:

\N newline
\S space
\ backslash

These are therefore encoded in the GCODE as

\&N newline
\&S space
\&\& backslash

Control and request strings may appear both before the first page of text, and within the data for a
page.

84 Format of level 4 GCODE

26. Font metric definitions

SGCAL reads in the widths of the characters in a font whenevebitidfont directive is obeyed.
The widthinformation is held in human-readable form ifoat library, which consists of a number
of separate font files.

There is a fairly common format for font metric information known as an AFM file; in particular
this is used for many PostScript fonts. If an AFM file is available for a particular font, SGa&AL

be instructedpy entries in its font file, to read the character width and kerning information from
the AFM file. Otherwise this information must be provided in the SGCAL font file.

The nameof each font file has to be derived from the font name which is given tbimiogont
directive. The first part of the name (before the slash) is used as the name of a sub-directory in the
SGCAL library in which to look for the font file proper

In the SGCAL library there is a file calldebntTran which consists of a number of lines wit,
each containing a font name and the equivalent font library file name. This indirectioasisltaof
history An example of an entry in this file is:

Palatino-Roman Palatin-rm

If a font is requested which is not in this configuration file, SGCAL takes the first 14 charafcters
its name. (See how old this code is!)

If a font file cannot be found for a given font, or if the data in the file does not correspond to the
given font name, SGCAL generates an error message and exits with a serious error code.

SGCAL is designed to make use of the existing fonts in a printing device. The data in the font
library must therefore correspond to the capabilities of the device if correct formattingbes to
achieved.

26.1 Font file format

The format of an individual font file is now described. All dimensions are givenillipoints for a
1-point font. Thus, for example, if a character width is specified as 722, then that character in a
10-point version of the font would be 7.22 points wide. All font files start as follows:

FONT "< font name>"

REQUEST "<request information>"
SPACE <n>

THINSPACE <n>

EXACTSPACE >

HYPHEN <>

LIGATURES <count>

<ligature data>

If the width and kerning information is to be provided inline, the rest of the font file tiees
following form:

KERNS <count>
<kerning data>
WIDTHS

<256 widths>

Alternatively, if the width and kerning information is to be read from an AFM file, the rest of the
font file takes this form:

ENCODING "<encoding file name>"
AFMFILE "< AFM file name>"

Font metric definitions 85

After the initial identification line, the keywords may appear in any order, excepEN@ODING
must preced®FMFILE . The keywords are all optional, except thatAFFMFILE is presentthen
ENCODINGs mandatory, antiVIDTHSand KERNSmust not be present.

The purpose of the option®&EQUESTthat whichfollow the font identification is to pass infor-
mation to programs that interpret the GCODE generated by SGCAL. At present there are no
programs that make use of font request information.

The SPACE keyword has the &ct of setting a value for all three space parameters; thus it
normally comes first if either ahe other two are specified. The ‘ordinary’ space is the widtd

to separate words in this font. It can, of course, be stretchefietd justification, and it isubject

to SGCALSs ‘looseness’ parameter for an individual paragraph.

The HYPHENkeyword defines which character in the font is to be used as a hyphen charheter
default is 45, the minus character in the ASCII encoding.

The LIGATURES keyword is followed by a number which specifies the number of lines of data
which follows it. Each ligature data line consists of a specification of three characters. If the first
two are encountered together in a word, they are replaced by the third. A charactdre may
specified either as a number represendingsan encoding, oras a character preceded by a single
double-quote character. For example,

LIGATURES 2
"' 174
" 175

specifies thatf’ followed by ‘i’ is to be replaced by character number 174, ‘&ndollowed by ‘I
is to be replaced by character number 175. The ligature definitions can be presented in any order
and any text after the first three items on the line is ignored.

26.2 Inline kerning and width data

Inline kerningdata is specified in a similar way to ligatures. Each line consists of the specification
of two characters followed by a dimension. A negative dimension indicates that the characters
should be moved closer togethethile a positive one indicates that they should be mdueither

apart. Any text following the third item on each line is ignored and may be used for confifoent.
example,

KERNS 3

IIA IIW _80

Ilf m 55

"f174 -18 f followed by fi

The WIDTHS keyword appear®n a line by itself. It must be followed by 256 widths for the
characters in the font. They may occupy as many lines as necessary

Here isan example of the definition of a PostScript font with inline kerning and width data
(shortened to save space).

FONT "Times-Roman"
REQUEST "preview: FONT # atl"
SPACE 312

THINSPACE 100
EXACTSPACE 600

HYPHEN 45

LIGATURES 2

"fi 174

" 175

KERNS 102

74

""s -55

<100 more lines of kerning data>
WIDTHS

86 Font metric definitions

722 722 722 722 722 722 667 611
<31 more lines of width data>

26.3 Kerning and widths from an AFM file

When the kerning and width data are to be read from an AFM file, the fortofifiins pointers to

two other files: the AFM file itself, and a file that defines the encoding scheme. AFM files contain
definitions ofcharacterdyy name, and it is the encoding file that associates each character with a
code number

The following example is for a PostScript file for which an AFM file is available:

FONT "Times-Roman"
REQUEST "preview: FONT # atl"
SPACE 312
THINSPACE 100
EXACTSPACE 600
HYPHEN 45
LIGATURES 2

"f' 174

"f" 175

ENCODING "standard"
AFMFILE "Times-rm"

SGCAL searches in an encoding library for the encoding file, and in an AFM library for the AFM
file; the whereabouts of these libraries are built into the SGCAL binary, but can be overridden on
the command line. The encoding file contains a list of 256 character names, with full stops for
those that are undefined. The SGCAL standard encoding is as follows:

Aacute Acircumflex Adieresis Agrave Aring Atilde Ccedilla Eacute Ecircumflex Edieresis

Egrave lacute Icircumflex Idieresis Igrave Ntilde Oacute Ocircumflex Odieresis Ograve Otilde
Scaron Uacute Ucircumflex Udieresis Ugrave Ydieresis Zcaron Yacute Eth Thorn trademark
space exclam quotedbl numbersign dollar percent ampersand quoteright parenleft parenright
asterisk plus comma hyphen period slash zero one two three four five six seven eight nine colon
semicolon less equal greater questonat ABCDEFGHIJKLMNOPQRSTUVW
XY Z bracketleft backslash bracketright asciicircum underscore quoteleftabcdefghijkl
mnopqrstuvwxy z braceleft bar braceright asciitiide . aacute acircumflex adieresis
agrave aring atilde ccedilla eacute ecircumflex edieresis egrave iacute icircumflex idieresis igrave
ntilde oacute ocircumflex odieresis ograve otilde scaron uacute ucircumflex udieresis ugrave
ydieresis zcaron yacute eth thorn copyright Euro exclamdown cent sterling fraction yen florin
section currency quotesingle quotedblleft guillemotleft guilsinglleft guilsinglright fi fl . endash
dagger daggerdbl periodcentered . paragraph bullet quotesinglbase quotedblbase quotedblright
guillemotright ellipsis perthousand . questiondown . grave acute circumflex tilde macron breve
dotaccent dieresis . ring cedilla . hungarumlaut ogonek caron emdash onequarter onehalf
threequarters brokenbar onesuperior twosuperior threesuperior logicalnot plusminus minus divide
multiply degree mu registered . AE . ordfeminine Lslash Oslash OE ordmasculine
ae . . . dotlessi . . Islash oslash oe germandbls

This is the standard encoding used by Adobe fonts, with additional assigments for those characters
not given an encoding by Adobe, as detailed in section 10.10 above.

Font metric definitions 87

Part Il

Auxiliary programs

27. The sgtops command

The sgtops command isa program for converting GCODE output from SGCAL into PostScript. It
is capable of selecting particular pages, making certain size reductions and magnifications, and
arranging small pages appropriately on larger sheets.

sttops [-from] < file> [-to< file>] [-header < file>]

[-pages < list>] [-format < name>] [-reverse]

[-odd] [-even] [-noduplex] [-nocolour]

[-pamphlet [1]2]] [-copies < n>] [-landscape]

[-quiet] [-help]
If no destination fileis specified, the output is written to a file whose name is constructed from the
input file by replacing its extension, if any, withs . If neither input not output files aspecified,
input is read from the standard input and written to the standard output.

The -header option specifies a PostScript header file; you should not normally need to use this
option. When it is omitted, the fileShead in the SGCAL library is used.

The keywords-to, -pages, -format, and -pamphlet may be abbreviated teo, -p, -f, and -pa,
respectively.

The list of pages to include consists of comma-separated items, each item consistismg@ie a
number ora pair of numbers separated by a minus sign. The list should be in ascending loeder
numbers refer to the count of pages in the GCODE file, that is, theghgseal page numbers, for
example,

sgtops myfile.sgout -p 1-4,7,18-22

The -odd and-even options cause only odd-numbered or even-numbered pages, from among those
selected, to be processed.

The -format item specifies the format of the input file and how is it to be reduced or magifified,
required. Thisoverrides any format specification that may be embedded in the GCODE. Allowed
values for the format name are:

a3 input is formatted for A3 page size
a4 input is formatted for A4 page size
a5 input is formatted for A5 page size
a6 input is formatted for A6 page size
a3toa4 input is formatted for A3 page size; reduce it to A4
a3toab5 input is formatted for A3 page size; reduce it to A5
a3toab input is formatted for A3 page size; reduce it to A6
a4toa3 input is formatted for A4 page size; enlarge it to A3
a4toas input is formatted for A4 page size; reduce it to A5
a4toab input is formatted for A4 page size; reduce it to A6
a5toa3 input is formatted for A5 page size; enlarge it to A3
a5toad input is formatted for A5 page size; enlarge it to A4
a5toa6 input is formatted for A5 page size; reduce it to A6

A5 and A6 pages are printed two-up aflodr-up, respectivelyon an A4 page, ansimilarly, when
A3 paper is being used, multiple A4 and A5 page images are printed on each page.

The -reverse option causes the selected pages to be output in reverse order; this is really only of
use for pages that are the same size as the,papetherwise the ordering of multiplsmaller
pages on larger paper will be strange.

The default is to generate PostScript that specifies duplex printing if the printer has that capability
in ‘tumble’ mode ifpamphlet is used. This can be disabled by specifyingduplex.

The sgtops command 91

If -nocolour is specified, any colour specifications are converted to grey levels by avethging
sum of the red, green, and blue componehkiswever as most black-and-white printersan
themselves turn colours into greylevels, this option will rarely be needed.

The -pamphlet option is useful for A5 and A6 pages printed on A4 paper, or for A4 anga§Bs

printed on A3 paper. It causes the pages to be output in the correct order such that the resulting
pages can be reproduced double-sided directly and then folded and bopachdhlet is followed

by thenumber 1, then only the first of every pair of full-size page images is output; if it is followed
by 2, then the second of every pair is output. This makes it easy to print all the first sides, then put
the output pages back into a non-duplex printer to print the second sides.

The -pamphlet option can be used in conjunction with thages option. It prints onlythose pages
that are selected, but in the appropriate pamphlet configuration.

The -copies option does what its name implies; the keyword must be followed by a nyarskit
inserts in the PostScript a directive which causes multiple copies of each page to be printed.

The -landscape option causepages to be printed in landscape (long side horizontal) instead of the
default portrait(short side horizontal) orientation. This applies to the logical pages)evetssarily
to the physical pages.

Finally, the-quiet option suppresses the comments 8gabps normally outputs.

27.1 Control and request sequences in GCODE

sgtops treats control sequences in the GCODE (generated by the S@@htol directive) asin-
line PostScript, and copies them directly to the output.

sgtops also recognizes a number of request sequences (generated by the B&0dst directive).
Those that are not recognized are ignored. The following requests are recognized:

PostScript: format < format>

If the -format keyword (seeabove) is not used on the command line, the value fronrehisest is
used.

PostScript: font < number>

This requestorcessgtops to output a setting for the given font number in the PostScript. Normally
it outputs a font number only when it is about to output text in that font. Howdévesme external
PostScript is about to be included, having the current font forcibly set first may be necessary

PostScript: get < filename>
The named file is included verbatim in the output.

PostScript: landscape
PostScript: portrait

These requests tedgtops the orientation that is to be used.
PostScript: modifyfont < number> < string>

This requestcauses a font to be modified. Thetring> is PostScript that is applied to the font
when it is defined. The most common use of this it for creating slanted fonts. For example, the
adps standard style contains several SGCAL commands of this form:

.request "PostScript: modifyfont 2 +++
font 2 get[1 00.251 0 0] +++
makefont font 2 3 -1 roll put "

For the inclusion of imagesgtops recognizes:

jpeg: < num> < denom> < filename>
png: < red> < green> < blue> < filename>

92 The sgtops command

which request the inclusion of the named JPEG or PNGrékpectively For a JPEG file, the first
two arguments specify a JPEG decompression ratio. For a PNG file, the firstathoeeents
specify the colour of the background that is to be used if the image contains transparent pixels.

The sgtops command 93

28. The sgpoint program and style

The sgpoint command is used to display full-screen images that are suitable for projection. In other
words, itis a slide-show bolt-on for SGCAL. The command reads a Gcode file, and displays its
contents in a window that is judarger than the physical screen size, so that whedow
decorations are not visible. If you are running a window manager with a virtual screen and can
move to other parts of it using the mouse, you can ‘escape’ to see other windows while leaving
sgpoint’s display still available. Thegpoint window is moveable if you can get to its moving
handles.

sgpoint expects the output to have an appropriate page width and dpically, it will have
been formatted using thsgpoint style, whichis described below. This style operates in three
modes: a ‘display’ mode for showing slides, a ‘handout’ mode for printing handouts, tewo-Ag
paper and a ‘table-of-contents’ mode for making a list of the slides.

28.1 Building sgpoint

sgoint uses theGTK+ library, andalso the JPEG and/or PNG libraries if you want to dispREG
or PNG images in slides. At present, JPEG and PNG are the only kinds of image that are
supported.

To compilethe SGCAL suite to includsgpoint, add--enable-sgpoint to the./configure command.
To include the JPEG support as well, agehable-jpeg, and similarly for PNG, add--enable-png.
The JPEG and PNGupport, if so configured, also applies dgiops. You may also need set
CFLAGS and LFLAGS for./configure if the GTK+, JPEG, or PNG libraries and include fil®
not in the standard places.

28.2 Running sgpoint

If sgpoint is started without anyaguments, it prompts in a dialogue box for a file name.
Otherwise, the name of the file containing the Gcode can be given on the command line. There are
are no other arguments or options. For example:

sgpoint myslides.sgout
The following keystrokes are recognized:

space Advance tonext part of the current slide (if the slide contawats) or to the next slidé
there are no morwaits.

G Puts up a dialogue box into which you can type a slide number. Regss to go to that

slide.
Q Quits sgpoint.
R Reloads the input file. This is useful for testing while creating a slide set.

- Advance to the next slide, skipping any pending undisplayed parts.
- Go back to the previous slide.

The left mouse button has the sasfiect asspace and the right mouse button has the sanfecef
as a left arrow

No other keys or buttons have anjeet.

28.3 Control and request sequences in Gcode
sgpoint ignores control sequences in the Gcode — there should not normally.be any

sgpoint recognizes the following request sequences:
sgpoint: wait

94 The sgpoint program and style

This marks a ‘wait point’ in the slide. The display is halted until the space bar or the left mouse
button is pressed. This feature makes it possible to ‘reveal’ a slide bit by bit, inclodantying
parts of it.

sgpoint: background < red>,< green>,< blue>

This request sequence specifies a colour for the background to the slides. For exhenple,
following SGCAL directive generates a request of this type.

.request "sgpoint: background 0.8,0.8,1.0"

There is a convenience macro calleackground in the sgpoint style (seebelow). Space is an
acceptable alternative to comma as a separator

jpeg: < num> < denom> < filename>

This sequence requests the display of the JPEG image in the given file with its top |lefoimeand

at the current point. The image can be scaled by setimg><and <denom>, but this scaling is
limited by the JPEG library to 1/1, 1/2, 1/4, or 1/8. There is a convenence macrojpedjed the

sgpoint style. This should normally be used, because it adjusts the PostScript scale for handout
output.

png: < red> < green> < blue> < filename>

This sequence requests the display of the PNG image in the given file, with its top left hand corner
at the current point. The colour that is specified is used as the background colour for images that
contain transparent pixels. There is a convenience macro gallgdn the sgpoint style. This

should normally be used, because it adjusts the PostScript scale for handout output.

The numerical arguments for both JPEG and PNG display requests may be separated by commas
instead of spaces.

28.4 The sgpoint style

When an input file is processed normally using $beint style, the output is formatted faicreen
display The slide number is shown in the bottom right hand coffiee line length and pagdepth
work nicely on my laptop screen, but may need adjusting for different screen sizes.

If the variabletoc is defined while processing using tegpoint style, SGCAL generates a table of
contents that is written to treside file. The normal output is also generated.

If the variablehandout is defined while processing using tlsgpoint style, SGCAL generates
output with two slideper page, each enclosed in a box, for an A4 page size. The easiest way to do
this is, for example:

sgcal myslides.sg -d handout

Note that-d should be at the end of the command because it can define more than one variable.
Output produced by a run of this kind must be processedgtyps in the usual waybefore
printing. Centredpage numbers are added as a footing; you can add to the footing by setting the
variablesfootleft, footcentre, andfootright if you wish. Alternatively you can provide your own

foot setting — copy the one from the style so as to preserve the numbering for slides.

You can settypeface and sanstypeface before including the style, in the same was as for the
normal adps style. The standard flags are defined, and you canusesecents, usegreek, and
usespecials in the normal way

You can set the variabledisplaycolour and seccolour to set the colour for text in displaysnd
second-level bullet points (the default is black). If you want to do this only for slides, ardrnot
handouts, use something like this:

.if Iset handout

.set displaycolour "0.2,0.2,1.0"
.set seccolour "0.4,0.5,0"

fi

The sgpoint program and style 95

The following macros are defined in thgpoint style:

.a <text>
Outputs a top-level bullet point.

.ab <text>
Outputs a top-level bullet point, followed by a ‘blank’ of white space.

.as <text>

Outputs a top-level bullet point, followed by one linedepth of white space.

.aspic

The start of an in-line Aspic input section, for a line-art drawing. There is no need to put this inside

a display — all that is handled automatically. This macro can be given, as an optumadat; the
name of the Aspic command that is to be run (the default is ‘aspic’). This is useful for testing.

at <n>
Moves to an absolute position on the slide, measured from the top.

b <text>
Outputs a second-level bullet point.

.background <red>,<green>,<blue>
Sets a background colour for slides; ignored for handouts. Spaces can be used instead of commas
as a separators.

.bb <text>
Outputs a second-level bullet point, followed by a ‘blank’ of white space.

.blank <n>
Include vertical white space, approximately half a line depth times <

box <text>
Displays the text inside a rectangular box.

bs <text>
Outputs a second-level bullet point, followed by one linedepth of white space.

display <args>
Much the same as in other SGCAL styles, except that the only available argumeasssarand
rm.

.endd
Ends a display

.enddb
Ends a display, followed by a ‘blank’ of white space.

.endds
Ends a display, followed by one linedepth of white space.

.endspic
Ends an Aspic definition.

Jpeg <file> <indent> <depth> <num> <denom>

Include an image from a JPEG file. The indent defaults to zero, and the déptd toThe <um>

and <denom> are the JPEG decompression scaling, defaulting to 1/1. The only valid satié4l,

1/2, 1/4, and 1/8. The current point is not moved automatically; you have to set the depth explicitly

.png <file> <indent> <depth> <background colour>

Include an image from a PNG file. The indent defaults to zero, and the defdiBldo. The
background colour is used only if the PNG image contains transparent pixels. It beaspecified

as three comma-separated numbers. The current point is not moved automatically; you have to set
the depth explicitly

rule
Draws a horizontal rule.

96 The sgpoint program and style

S
A shorthand for.space with an argument otld .

glide <title>

Start a new slide; the title may be empty (the default).

toc <title>

If a slide has no title, you can specify a string to be used in the table of contents via this macro.
wait

Inserts a ‘wait point’ into the slide. Note that wait points can also be specified insideghapidc
definitions.

The sgpoint program and style 97

29. The sgbuildhy and sghytest commands

The sgbuildhy and sghytest commands are auxiliary programs that build and test SGCAL
hyphenation dictionary, respectively

29.1 The sgbuildhy command
sgbuildhy < source file> < destination file> [< max index size>]

This commandbuilds an indexed hyphenation dictionary. The source file that is supplied with
SGCAL is in thesrc directory and is calledhyphenlist. It is an alphabetically ordered list of
words, one per line, each containiaghyphen at all its potential hyphenation points. Example,
here is a short extract:

eye-tooth
eye-wash
eye-wit-ness
fab-ri-cation
fab-ri-cator
fabu-lous
fabu-lously

You mustensure that the words are in alphabetical orded that there are no trailing spaces;
otherwise, the resulting dictionary will not work properly

Note thatSGCAL ‘de-plurals’ words before searching the dictionary. See the descriptairajnter
23 for the rules that are used. However, for some plural forms you have to include both versions.
For example:

bat-teries
bat-tery

If you include a word only it itplural form, the singluar will not be hyphenated. An example of
this is
bed-clothes

The sgbuildhy command creates a destination file that is a copy of the source file, preceded by an
index that specifies points in the file where words with certain four leading characters start. Here is
part of a typical index:

hate47724
hawt47817
hazi47913
heal48154

This means that the words starting with ‘hate’ begin &etf47724in the file, and so oriThe very
first line of the file contains the number of index entries.

By default,the maximum size of the index is 2048 entries, but this can be changed by giving a
third agument tothe command. In practice, the index is likely to be smaller thanm&emum,
because duplicateme removed. The currently distributed list contains approximately 16,000 words.
Thus there should be an index point roughly every eight words, but there are many seqtiences
more than eight words with the same initial four letters.

29.2 The sghytest command
sghytest < dictionary> [< input file> [< output file>]]

The sghytest command isused to test new hyphenation dictionaries that have been built by
sgbuildhy. The first, mandatory, argument is the name of the dictionary to be tested. Input and
output files can be specified; if they are not, the standard input and output are used.

98 The sgbuildhy and sghytest commands

The input file is split up into words (there méwg any number on a line). The output shows the
hyphenation points for the words, one per line.

The best way to test a new hyphenation dictionary is to make a copy of the source file, remove all
the hyphens, and run it througghytest. The result should be identical to the original source file.
The most common reason why it may not be is that the original is not in alphabetical order

The sgbuildhy and sghytest commands 99

