
Specification of the SGCAL text formatter

by

Philip Hazel

Copyright  2004 University of Cambridge Computing Service

New Museums Site
 Pembroke Street
 Cambridge CB2 3QH
 United Kingdom

Edition 3.1
December 2004

 Contents

1. Introduction 1

2. Basic SGCAL Concepts 5

2.1 What is text processing? 5
 2.2 Specific and generic markup 5
 2.3 Coding the markup in SGCAL 5
 2.4 Special characters 6
 2.5 SGCAL’s standard macros 7

3. SGCAL Input File Structure 8

3.1 Selecting a standard style 8
 3.2 Special character flags 8
 3.3 An example of SGCAL input 9

4. An Example of SGCAL Output 10

4.1 A short story 10
 4.1.1 The plot thickens 10
 4.1.2 The dilemma 10
 4.1.3 Conclusion 10

5. SGCAL Markup for Running Text 11

5.1 Paragraphs 11
 5.1.1 Characters that introduce flags 11
 5.1.2 Font changes and underlining 11
 5.1.3 Formatting paragraphs 12
 5.2 Chapters, sections, subsections and sub-subsections 12
 5.3 Indentation 13
 5.3.1 Enumerated paragraphs 14
 5.4 White space 15
 5.5 Doublespaced output 16
 5.6 Hyphenation 16
 5.7 Horizontal lines 16

6. Notes, emphasis and indexing 17

6.1 Footnotes 17
 6.2 Emphasis 17
 6.3 Indexing 17

7. Displayed Text 18

7.1 In-line displays 18
 7.2 Figures and tables 19
 7.3 Subscripts and superscripts 19
 7.4 Tabs 20
 7.5 Heads and feet 21

8. Advanced Features 22

8.1 Variables 22
 8.2 Changing a standard style 22
 8.2.1 Numbering chapters and sections 22
 8.3 Display indentation 22
 8.3.1 White space 22
 8.3.2 Heading styles 23

Contents i

 8.4 Number formats 23
 8.5 Varying heads and feet 23
 8.6 Thin and wide spaces 24

9. Command line interface 27

9.1 A ‘normal’ command line 27
 9.2 Handling forward references 28
 9.3 Using alternate library files 28
 9.4 Return codes from SGCAL 29

10. Overview of SGCAL processing 30

10.1 Input line format 30
 10.2 Standard styles 30
 10.3 Macros 30
 10.4 Flags 31
 10.5 Case sensitivity 31
 10.6 The setup section 31
 10.7 Empty lines 31
 10.8 Tab characters in input 31
 10.9 Processing of input lines 31
 10.10 Special characters 33
 10.11 Paragraph processing 34
 10.12 Tab processing 34
 10.13 Page processing 34
 10.14 Galley-style output 35
 10.15 Footnote processing 35

11. Types of output and dimensions 36

12. The SGCAL environment 37

13. Variables 38

14. Expressions 39

15. Standard styles 41

16. Standard macros 42

16.1 Aspic and endspic 42
 16.2 At 42
 16.3 Blank 42
 16.4 Box 42
 16.5 Chapter and chapenv 42
 16.6 Chapternotes 43
 16.7 Columns 43
 16.8 Display and endd 43
 16.9 Displayenv 43
 16.10 Doublespace 44
 16.11 Em and nem 44
 16.12 Endnotes 44
 16.13 Figure and endfigure 44
 16.14 Footnote and endf 44
 16.15 Footnoteenv 45
 16.16 Nofoot 45
 16.17 Numberpars, nextp and endp 45
 16.18 Pagenumbers 46
 16.19 Rule 46
 16.20 Section and sectenv 46
 16.21 Singlespace 46

ii Contents

 16.22 Splitfootnotes 46
 16.23 Subsection and subsectenv 46
 16.24 Subsubsection and subsubsectenv 46
 16.25 Table and endtable 47
 16.26 Useaccents and usegreek 47
 16.27 Usespecials 47

17. PostScript-only macros 48

17.1 Landscape 48
 17.2 Picture, endpicture, and psinclude 48
 17.3 Portrait 48
 17.4 Transformfont 48

18. Standard flag strings 49

19. Standard variables 51

20. Basic flags 53

20.1 Absolute tab (abstab, $a) 53
 20.2 Back ($B) 53
 20.3 Draw Bezier curve (bezier, $bc) 53
 20.4 Force capitals (caps, $caps) 54
 20.5 Do not force capitals (endcaps, $nocaps) 54
 20.6 Centre tab (centretab, $c) 54
 20.7 Local centre tab (centreheretab, $C) 54
 20.8 Character ($=) 54
 20.9 Colour ($rgb) 54
 20.10 Discretionary hyphen (dhyphen, ~) 54
 20.11 Down ($D) 55
 20.12 End-of-line tab (endtab, $e) 55
 20.13 Local right-aligning tab (endheretab, $E) 55
 20.14 End underlining (endunderline, $pu) 55
 20.15 Change font (font, $f) 55
 20.16 Change font group (fontgroup, $g) 55
 20.17 Force output of font (forcefont, $ff) 55
 20.18 Force hyphenation (forcehyphen, $fh) 56
 20.19 Forward ($F) 56
 20.20 Horizontal rule (hrule, $hr) 56
 20.21 Hyphen (-) 56
 20.22 Indent tab (indenttab, $i) 57
 20.23 Variable insertion (insert, ~~) 57
 20.24 Line joining (join, +++) 57
 20.25 Level ($L) 57
 20.26 Position marking (mark, $M) 57
 20.27 Per-page footnote numbers (nextfnumber, $N) 57
 20.28 Disabling hyphenation (nohyphen, $nh) 57
 20.29 Non-splitting space (nosplitspace, $>) 58
 20.30 Environment restore (pop, $pop) 58
 20.31 Save environment (push, $push) 58
 20.32 Output right-to-left (righttoleft, $rl) 58
 20.33 Character quoting (quote, @) 59
 20.34 Space insertion (space, $s, see also #) 59
 20.35 Splittable non-stretchable space (splitspace, $S) 59
 20.36 Extra-stretchy space (stretchspace, $<>) 59
 20.37 Filled shapes (shapefill, $sf) 60
 20.38 Sloping rule (srule, $sr) 60
 20.39 Start underlining (startunderline, $su) 60

Contents iii

 20.40 Tab ($t) 60
 20.41 Thin space (thinspace, $<) 60
 20.42 Up ($U) 60
 20.43 Vertical rule (vrule, $vr) 60

21. Basic directives 61

21.1 Aside 61
 21.2 Backspace 61
 21.3 Bindfont 61
 21.4 Call 62
 21.5 Cancelflag 62
 21.6 Cancelmacro 62
 21.7 Colseparation 62
 21.8 Comment 62
 21.9 Contiguous 62
 21.10 Control 63
 21.11 Cset 63
 21.12 Cspace 63
 21.13 Disable 64
 21.14 Emphasis 64
 21.15 Enable 64
 21.16 Endsetup 64
 21.17 Error 64
 21.18 Flag 65
 21.19 Font 65
 21.20 Fontgroup 65
 21.21 Foot 66
 21.22 Footdepth 66
 21.23 Footenv 66
 21.24 Foottext 66
 21.25 Format 66
 21.26 Graphcolour 67
 21.27 Graphgrey 67
 21.28 Head 67
 21.29 Headdepth 67
 21.30 Headenv 67
 21.31 If 67
 21.32 Include 68
 21.33 Indent 68
 21.34 Index 68
 21.35 Inserttexts 68
 21.36 Justify 69
 21.37 Library 69
 21.38 Linedepth 69
 21.39 Linelength 69
 21.40 Longcontrol 69
 21.41 Looseness 69
 21.42 Macro 70
 21.43 Multicolumn 70
 21.44 Newcolumn 70
 21.45 Newline 71
 21.46 Newpage 71
 21.47 Newpar 71
 21.48 Nosep 71
 21.49 Page 71
 21.50 Pagedepth 71

iv Contents

 21.51 Pagerequest 71
 21.52 Pagexoffset 71
 21.53 Pageyoffset 72
 21.54 Parindent 72
 21.55 Parspace 72
 21.56 Pop 72
 21.57 Push 72
 21.58 Request 72
 21.59 Rset 73
 21.60 Resolution 73
 21.61 Rulecolour 73
 21.62 Ruledash 73
 21.63 Rulegrey 73
 21.64 Rulewidth 73
 21.65 Savetexts 73
 21.66 Set 73
 21.67 Showhyphens 74
 21.68 Space 74
 21.69 Stop 74
 21.70 Tabset 74
 21.71 Tempindent 74
 21.72 Templinelength 75
 21.73 Textcolour 75
 21.74 Textgrey 75
 21.75 Warning 75

22. System variables 76

23. Details of hyphenation 78

24. Miscellaneous 79

24.1 Kerning 79
 24.2 Vertical spreading 79
 24.3 Flag handling 79
 24.4 Rules and other lines 79
 24.5 Widow and orphan lines 79
 24.6 Paragraph ends 79

25. Format of level 4 GCODE 80

25.1 General format 80
 25.2 Coordinate system 80
 25.3 Control sequences 80
 25.4 Introductory control sequence 80
 25.5 Control sequences without arguments 81
 25.6 Control sequences with arguments 81
 25.7 Control sequences before the first page 81
 25.8 Control sequences on pages 82
 25.9 Control and request strings 83

26. Font metric definitions 85

26.1 Font file format 85
 26.2 Inline kerning and width data 86
 26.3 Kerning and widths from an AFM file 87

27. The sgtops command 91

27.1 Control and request sequences in GCODE 92

Contents v

28. The sgpoint program and style 94

28.1 Building sgpoint 94
 28.2 Running sgpoint 94
 28.3 Control and request sequences in Gcode 94
 28.4 The sgpoint style 95

29. The sgbuildhy and sghytest commands 98

29.1 The sgbuildhy command 98
 29.2 The sghytest command 98

vi Contents

 1. Introduction

SGCAL is a text formatting program that is a direct descendent of the GCAL program that was
originally written for an IBM mainframe around 1980. The current release should run on any
system with a standard C compiler. However, the building apparatus that is supplied is aimed at
Unix-like systems.

SGCAL’s input takes the form of a text file that contains markup describing how the text is to be
formatted. There are two forms of output:

• ‘Plain’ output is normal ASCII text, suitable for viewing online using a text editor or any
 other means of file display.

• ‘Fancy’ output encodes typeset pages in a format known as Gcode. This has to be further
 interpreted for display or printing.

An auxiliary program called sgtops is used to translate Gcode into PostScript. It is able to select
specific pages and perform certain transformations on them.

Another auxiliary program calledsgpoint is used to display Gcode output on a laptop screen for
“slide” projection. A special style is provided to make it easy to define “pages” that are the correct
size. The same input can be re-formatted as two-up pages for printing.

Plain output is obviously restricted to what can be represented as ASCII text. Within an SGCAL
source file, alternative input can be processed, depending on whether the output is plain or fancy.
For example, you can arrange that marked up strings of a certain type are displayed in italic in
fancy output, but put in quotes in plain output.

Line graphics are available directly in SGCAL input, but at a low level. An auxiliary program
called Aspic (distributed separately) can be called from within SGCAL to process a high level
graphics description language into the low level operations that SGCAL can interpret. This is useful
only for fancy output.

As it processes an input file, SGCAL can be requested to output index and table-of-content
information to an auxiliary file.

SGCAL makes a single pass over the input text. It cannot therefore handle forward references
directly. However, it contains a mechanism for remembering the values of certain variable settings,
and re-using them on a second pass. A script called sgcal-fr is provided for running SCCAL two
(or sometimes three) times, in order to resolve forward references.

As well as sgcal, sgtops, and sgpoint, two further programs are provided as part of the SGCAL
distribution:

• sgbuildhy is a program for building the indexed hyphenation dictionary that is used by
 SGCAL.

• sghytest is a program for testing hyphenation.

The rest of this document is divided into a number of parts.

Part I contains an introduction to SGCAL text processing. It explains the standard style that is
provided in the SGCAL library, and introduces most of the basic facilities. Part II contains a
complete specification of SGCAL, but with little introductory material, and scant motivation for
the various facilities. Part III contains specifications of the auxiliary programs sgtops, sgpoint,
sgbuildhy, and sghytest.

This document was constructed from a number of separate documents in September, 2003, when
the SGCAL source code was arranged into a source distribution that could be built using the
conventional ‘configure’, ‘make’, ‘make install’ method. At that time, the documentation had not
been touched for about ten years. It was brought up-to-date as regards the current facilities and
specification, but there was no serious overall re-editing, because of lack of time. This explains the
variations in style, and the lack of an index.

Introduction 1

Part I

Introduction to text processing with SGCAL

 2. Basic SGCAL Concepts

2.1 What is text processing?
The terms word processing and text processing are often confused. The former normally refers to a
system or program that permits the user to lay out text on a screen more or less in the form in
which it is subsequently printed. The latter is a more involved process in which the text of a
document (often called the copy) is entered into a computer system together with additional
information as to how it should be laid out and printed. A word processor or text editor can be used
to do this. The extra information mixed in with the copy is called the markup, and it has the same
function as the marks formerly added to a paper manuscript by a copy editor before sending it to be
typeset, in the days before ‘manuscripts’ were electronic. The mixture of copy and markup is read
by a text processing program, which formats the copy as requested and generates instructions for
the device on which it is to be printed or displayed.

While the added complication imposed by a text processor may not always be appropriate for short
documents, for longer ones there are several advantages. The device on which the input is prepared
can be very much simpler than the ultimate printing device; a normal workstation can be used to
prepare text for the most sophisticated phototypesetter, for example. Another advantage is that it is
easy to format the same input text in different ways or for different output devices, provided care is
taken in the marking up. Text processors also offer facilities such as automatic chapter, section and
footnote numbering, floating inserts, creation of indexes and so on.

2.2 Specific and generic markup
Many text processors allow the user to include very specific instructions in the markup, for
example ‘leave 12 points of white space and indent the next line by 24 points’, which might be
used at the start of a paragraph. (A point is a traditional unit of length used in the printing industry;
it is approximately 1/72 of an inch.) Including such specific markup in an input file is not a good
idea because if there is any need to change it for some reason, every occurrence in the filemust be
sought out and changed.

The alternative is to use generic markup, which indicates the logical structure of the document
without specifying how this structure is to be represented on the page. For example, the start of
each paragraph is indicated by a markup instruction‘start of paragraph’, and the start of a chapter
by ‘start next chapter with title such-and-such’.

Of course, the text processor has ultimately to be told what ‘start of paragraph’ actually means in
layout terms. This is done by a series of definitions that can either appear at the start of the input,
or in a separate file which is referenced from within the main input. Such a set of definitions
specifies adocument style. It is then easy to alter the layout parameters if the need arises, and, what
is perhaps more important, the style is guaranteed to be consistent throughout the document.

2.3 Coding the markup in SGCAL
Because the input to a text processor is a conventional file of characters that can be typed on a
keyboard, there has to be some way of distinguishing which characters are copy and which are
markup. In SGCAL there are two distinct forms of markup encoding:

• Directives are major instructions which always occupy an entire input line by themselves. The
 line begins with a dot, followed by the name of the directive and possibly other information.
 Some examples of SGCAL directives are

.display
 .section Coding the markup in SGCAL
 .index directives

Directive names are normally in lower case (small letters) – in SGCAL, upper case and lower
 case letters are considered as distinct.

Basic SGCAL Concepts 5

 • Flags are the other form of markup; they normally appear mixed up with the copy, and
 normally consist of a character that is neither a digit nor a letter, possibly followed by other
 characters. Upper and lower case letters are distinct in flags as well as in directives, so, for
 example, ‘$f’ and ‘$F’ are two completely different flags.

Flags are used to encode instructions that apply to the immediately surrounding text (for
 example, to change font) or to cause the insertion of a character that is not available on the
 normal keyboard. Some examples of SGCAL flags are

$it{ to change to italic text
 # to insert an ‘exact space’, of fixed width
 $alpha to insert a Greek alpha

When input is being prepared for SGCAL it is important that the copy and the markup not be
confused. The typist must take special action if any line begins with a dot (which is not very likely)
or if any of the special characters that begin a flag appears in the copy. The set of such characters
can be changed by SGCAL directives, but the default set that is used with the standard styles is

~ tilde
 _ underline
 # sharp sign, or ‘hash’
 $ dollar
 } closing curly bracket

If it is necessary to include one of these characters as part of the copy, it should be preceded by a
‘commercial at’ character (@). If you really want to print an ‘at’ character, you have to double it.
Thus:

for ~ type @~
 for _ type @_
 for # type @#
 for $ type @$
 for } type @}
 for @ type @@

The flag sequence ‘@’ is called the quote flag, and it can also be used to insert a dot at the start of a
line, should this ever be necessary.

As well as these flag characters, the ‘- ’ character has special significance in that it is treated as a
possible hyphenation point. To prevent hyphenation in an individual instance, ‘@-’ can be used.

2.4 Special characters
There is normally a distinction between opening and closing quotation marks in typographic fonts,
the normal computer ‘quote’ character producing a closing single quote. For an opening single
quote the character called ‘grave accent’ in the ASCII character set is used.

Double opening and closing quotes are obtained by typing two successive ‘grave accents’ or
‘quote’ characters respectively. Here is an example of some copy that uses this convention:

He said `I shall write to ``The Times'' tonight'.

Typographic fonts may also distinguish between a hyphen, an en-dash and an em-dash, which are
all different lengths of short horizontal line. In SGCAL input, a single ‘- ’ character is treated as a
hyphen, while en-dashes and em-dashes are entered as two and three successive ‘- ’ characters
respectively. For example,

An en-dash is used for ranges, such as
 19--42, and a spaced en-dash is used -- as
 here -- to set off parenthetical comments.
 The use of an em-dash---without
 spaces---for this purpose is going out of
 fashion in the UK.

6 Basic SGCAL Concepts

2.5 SGCAL’s standard macros
The SGCAL program implements a number of basic text processing facilities, including a number
of particular directives and flags. It also provides means by which these basic facilities can be
combined into higher level operations. A directive which is built from more primitive operations is
known as a macro directive, and a collection of macro definitions is called a macro library.
Additional flags can also be defined.

SGCAL is intended to be used in conjunction with a macro library, and the use of ‘raw’ SGCAL
without any macro directives is exceptional. A standard library containing definitions for a standard
document style is part of the distribution. The directives and flags that are described in the
following sections include many that are in fact part of the standard library rather than ‘raw’
SGCAL.

Basic SGCAL Concepts 7

 3. SGCAL Input File Structure

An SGCAL input file is divided into two parts, the first of which is normally only a few lines long.
This selects the style for the document and possibly makes some changes to the standard options.
The remainder of the input file consists of the marked up copy, as described in what follows.

3.1 Selecting a standard style
The first line of an SGCAL file normally consists of alibrary directive specifying the name of the
style, enclosed in quotes. For example:

.library "a4ps"

selects the style that is designed for PostScript output on A4-sized paper. A style can alternatively
be specified as a parameter on the command that invokes SGCAL. This single line is all that is
needed in many cases.

Certain features of some styles can be varied by setting parameters before using the library
directive. For example, for the a4ps and a5ps styles, the size of type and the typeface family can
be specified in this way. No other directives should normally appear before library.

3.2 Special character flags
A number of standard flags are provided to give access to certain special characters that are not in
the normal ASCII character set. These standard flags, and the characters they represent, are as
follows:

--> → right arrow
 <-- ← left arrow
 <-> ↔ two-headed arrow
 ($) £ pound sterling
 ($E) € Euro
 (c)  copyright sign
 (TM)  trademark
 $’ ′ feet (or minutes)
 $. • bullet

An example of the use of these special characters is as follows:

.library "a4ps"
 6$’ of pipe cost ($)7.85.

SGCAL also contains support for letters from the Greek alphabet. However, these are not available
by default, and it is necessary to obey the directive

.usegreek

to gain access to them. The names of the flags are ‘$alpha ’, ‘ $beta ’, etc. for lower case letters,
and ‘$Alpha ’, ‘ $Beta ’, etc. for the capitals. Similarly, the directive useaccents defines a set of
flags for printing accented characters. They have names like ‘$eacute ’.

The more advanced user may wish at this point to include directives to vary the standard style, for
example to indent all the displays, or change the amount of white space preceding each section.
Some of the possibilities are described later in these introductory chapters. If this text is of any
length, it may be convenient to keep it in a separate file which is inserted into the main file by
means of the include directive, as for example

.include "header"

The include directive can also be used to put together a single document from a number of separate
files.

8 SGCAL Input File Structure

3.3 An example of SGCAL input
This is an example of a complete input file for SGCAL which illustrates the general style. The
markup items are described individually later in this document. The output produced from this file
follows on the following page.

.library "a4ps"
 .chapter An Example of SGCAL Output
 This is an example of the output produced by SGCAL
 when it processes the input on the previous
 page using the style definition ‘a4ps’.

.section A short story
 Once upon a time there was a $it{beautiful}
 princess who often used to go for long walks by
 herself in the woods near her castle.

.subsection The plot thickens
 One day, while she was out walking, she was
 confronted by a fierce
 .display
 $c $bf{D R A G O N}
 .endd
 which was spitting fire and flame.

.subsection The dilemma
 Fortunately the princess had grown up in the
 electronic age, and knew all
 about dragons and other monsters.
 .footnote
 In her palace she had a huge collection
 of home computers.
 .endf
 Should she
 .numberpars
 Zap it with her laser cannon?
 .nextp
 Lure it to the
 bottomless pit just around the next corner?
 .nextp
 Utter the magic spell given to her by the
 Great Binary Wizard?
 .endp

.subsection Conclusion
 The dragon, seeing that it had met its match,
 surrendered, and they both lived
 happily ever after.

An SGCAL input file

SGCAL Input File Structure 9

 4. An Example of SGCAL Output

This is an example of the output produced by SGCAL when it processes the input on the previous
page using the style definition ‘a4ps’.

4.1 A short story
Once upon a time there was a beautiful princess who often used to go for long walks by herself in
the woods near her castle.

4.1.1 The plot thickens
One day, while she was out walking, she was confronted by a fierce

D R A G O N

which was spitting fire and flame.

4.1.2 The dilemma
Fortunately the princess had grown up in the electronic age, and knew all about dragons and other
monsters.1 Should she

(1) Zap it with her laser cannon?

(2) Lure it to the bottomless pit just around the next corner?

(3) Utter the magic spell given to her by the Great Binary Wizard?

4.1.3 Conclusion
The dragon, seeing that it had met its match, surrendered, and they both lived happily ever after.

1 In her palace she had a huge collection of home computers.

10 An Example of SGCAL Output

 5. SGCAL Markup for Running Text

In a previous chapter the general form of SGCAL markup was described. In this chapter the
particular ‘marks’ relevant to sections of running text are defined and explained.

5.1 Paragraphs

Most paragraphs of running text can be typed verbatim. The only times when markup is
required are

• When one of the characters that SGCAL uses to introduce a flag is part of the copy;

• When a character not in the normal printing set is encountered;

• When a change of font or underlining state is required;

• When some change from the normal spacing or line splitting rules is wanted.

5.1.1 Characters that introduce flags
These are the characters ‘$’, ‘ #’, ‘ ~’, ‘ _’, ‘ } ’, and a full stop at the beginning of an input line; any
occurrences that are part of the copy must be preceded by ‘@’, for example:

... the @$20,000 question ...

Hyphens in the copy are taken as possible line-splitting places unless preceded by ‘@’.

5.1.2 Font changes and underlining
The following standard flags are defined for changing font:

$rm{ to select the roman font
 $it{ to select the italic font
 $sl{ to select the slanted roman font
 $bf{ to select the bold font
 $tt{ to select the typewriter font
 $ss{ to select the sanserif font
 $sc{ to select the ‘small caps’ roman font

Whenever there is a change of font, the previous font is remembered on a stack, from where it can
be recalled by means of a flag consisting of a single closing curly bracket. An example of a
sentence that uses several fonts is

These words are $it{italic}, $bf{bold}, and roman.

Advanced users who make use of other fonts are recommended to create suitable mnemonic flags.

Sections of text to be underlined are bracketed by theunderline flag, which consists of a single
underline character. For example, the input

Here is an _underlined_ word.

produces as its output

Here is an underlined word.

SGCAL is very flexible in the way its flags are defined, and it is possible to change the meaning of
any flag sequence. For example, if a document has been marked up with underlines, these can be
changed to, say, italic without changing the main input, by re-defining the meaning of the flag
sequence ‘_’. In general it is best to mark up for the most sophisticated form of output that is ever
likely to be used for the document, as it is easier to re-define the flags for a simpler output than
vice versa.

SGCAL Markup for Running Text 11

5.1.3 Formatting paragraphs
When SGCAL is formatting a paragraph it tries to fit as many words onto each output line as
possible. The length of input lines is of no account, nor is the number of spaces between input
words. For example, the input for the present paragraph could be as follows:

When SGCAL is formatting a paragraph
 it tries to fit as many words onto
 each output line as possible. The length of input
 lines is of no account,
 nor is the number of spaces between words.
 For example, the input
 for the present paragraph could be as follows:

Each line of a paragraph is stretched out to reach the right hand margin if SGCAL is operating with
both left and right justification enabled. The stretching is done by including extra spaces between
words. For output in which spaces are not significantly narrower than the printing characters (plain
output), the result is not very pleasing. Right-justification can be turned on or off at any time by
means of the justify directive. Right-justification is turned off by default for plain output styles.

It is occasionally necessary to tell SGCAL not to split a line at a particular place. The flag ‘$>’ is
used to specify a non-splitting space, for example

The author’s name is A.N.$>Other.

Such a space can, however, be stretched if necessary. Another sort of space that behaves justlike a
printing character and neither stretches nor is a possible splitting point is called an exact space. It is
indicated by the flag ‘#’.

A new paragraph is started whenever an empty input line or the newpar directive is encountered.
SGCAL reads the entire text of a paragraph before splitting it up into lines. The first line of a
paragraph is never placed at the bottom of a page, nor the last line at the top of a page, except in
the case of single-line paragraphs.

When a paragraph does not start at the top of a page, an amount of vertical space is output above it
such that the new paragraph is preceded by at least the amount specified by the parspace directive.
Style definition files normally select a default value appropriate to the output format, but this can be
changed any number of times. For example,

.parspace 36

specifies that, from now on, at least 36 points of space are to precede each paragraph.

A temporary indent is set for the first line of each paragraph. The size of this is controlled by the
parindent directive, and again the style definition files select an appropriate default. It is also
possible to override the indent for one individual paragraph by means of thetempindent directive
(see below). Normal typographic convention is to useeither blank space or an indent to signify a
new paragraph, but not both.

If it is necessary to force a new line of output without treating it as a new paragraph, the newline
directive can be used. This can optionally be followed by the word ‘justify’, which requests that the
line just terminated be right-justified, that is, stretched out to end flush with the right-hand margin.

5.2 Chapters, sections, subsections and sub-subsections
Paragraphs of text are usually grouped into larger units, and SGCAL has provision for up to four
different levels, not all of which need be used. For example, a novel may consist only of chapters,
whereas a technical note may be divided only into sections. The start of each portion of the text is
indicated by one of the following directives:

.chapter < title>
 .section < title>
 .subsection < title>
 .subsubsection < title>

12 SGCAL Markup for Running Text

For example

.chapter SGCAL Markup for Running Text
 .section Paragraphs

The way in which the titles are printed is determined by the macros and flags in the style definition
file: For example, when formatting for ASCII output, chapter titles are printed in upper case, but on
a laser printer they are printed in large type. In both cases they are centred.

If a chapter or section title starts with a double quote character, it is necessary to includethe entire
title in double quotes, and to double up any double quote characters that are in it. For example:

.section """Special"" features"

Titles can always be enclosed in double quotes, but they are mandatory only in this special case.

5.3 Indentation
Automatic indentation at the start of each paragraph is controlled by the parindent directive, as
described above. Paragraph indents are relative to the overall indentation, which is set by the
indent directive. For example,

.indent 6 em

specifies an indentation of six ems in the current font, as has been done for this text. An
 em is a traditional printer ’s unit of horizontal width, approximately the size of a capital
 ‘M’. In SGCAL it is taken as the width of an exact space. Indents may also be specified in
 points, inches, or centimetres:

.indent 36
 .indent 1 in
 .indent 2.54 cm

The paragraph indent as set byparindent is taken relative to the overall indent, and when there
 is a positive indentation set, the paragraph indentation may be set to a negative value,
 giving the effect demonstrated here. Other effects can be obtained by using the temporary
 indent facilities, of which the paragraph indent is really just a special case.

It is sometimes necessary to specify indents relative to the current indent. This can be done by
writing an arithmetic expression as part of the indent directive, and using the text
‘~~sys.indent ’ to represent the current indent. For example,

.indent ~~sys.indent + 24

This is an example of the use of the insert flag ‘~~’ to insert the value of an SGCALvariable into
the text. The name of this particular variable is sys.indent. Variables whose names begin with sys.
are system variables, and their contents are automatically maintained by SGCAL. The contents of
sys.indent are defined to be the current indentation value, expressed in points.

The directive

.tempindent < e1> < e2>

where <e1> and <e2> are arithmetic expressions, specifies an indentation of value <e1> which lasts
for the next <e2> output lines. If <e2> is omitted, the temporary indent lasts for one line only. For
example, the directive

.tempindent 4 em 2

has been used here. In effect, the directive

.tempindent ~~sys.indent + ~~sys.parindent

is automatically inserted at the start of every paragraph. A subsequent explicit tempindent directive
can override this, making

.newpar
 .tempindent < e1> < e2>

SGCAL Markup for Running Text 13

have a completely different effect to

.tempindent < e1> < e2>
 .newpar

in which the tempindent directive is cancelled by the subsequent newpar.

It is often necessary to place text in the indent space at the start of paragraphs. This can be done by
specifying a temporary indent of zero. Following the special text, the flag ‘$i ’ is used to restore
the alignment. This is one of SGCAL’s tab flags, more details of which are given in a later section;
it tabs to the current overall indent. An example of its use is as follows:

.indent 6 em
 .tempindent 0
 (1)$i This is the start of a numbered paragraph.

5.3.1 Enumerated paragraphs
Three common cases of paragraph indentation have been ‘wrapped up’ into a macro command
which allows paragraphs to be numbered, lettered, or ‘bulleted’ with an arbitrary character, respect-
ively. The directive numberpars indicates the start of a sequence of ‘numbered’ paragraphs,
indented relative to the current indent. Each subsequent paragraph must be marked by the directive
nextp, and the sequence is ended with endp. If numberpars is used on its own, the paragraphs are
numbered with ordinary arabic numerals which are placed in parentheses in the indent of the first
line of each paragraph. For example, the input

.numberpars
 This is the first numbered paragraph. If
 it is long enough to require more than one line,
 they are all indented by the same amount.
 .nextp
 The is the second numbered paragraph.
 .endp

produces the following output:

(1) This is the first numbered paragraph. If it is long enough to require more than one line, they
 are all indented by the same amount.

(2) This is the second numbered paragraph.

Blank space is always left between the paragraphs, and there is additional space before the first and
after the last. If roman numerals are required, one of the words ‘ROMAN’ or ‘roman’ can be added
to the numberpars directive:

.numberpars roman

This gives lower case roman numerals; ‘ROMAN’ gives upper case ones. Similarly, to obtain
lettered rather than numbered paragraphs, the numberpars directive is followed by ‘alpha’ or
‘ALPHA’. Finally, if an arbitrary character sequence follows numberpars it is used to mark each
paragraph. For example

.numberpars *

marks each paragraph with an asterisk. Calls to numberpars can be nested, causing ‘inner ’
paragraphs to be further indented, as shown in this example:

14 SGCAL Markup for Running Text

 $bf{Check List for Monday, 10th June}
 .blank
 .numberpars
 Check that
 .numberpars *
 Luggage contents are correctly listed;
 .nextp
 The luggage is labelled.
 .endp
 .nextp
 Include a first-class stamped postcard.
 .nextp
 $bf{Arrival at school:}
 .numberpars roman
 Children should arrive at School between
 8.30 and 8.45 am.
 .nextp
 If the coach is not already outside the gates,
 luggage should be deposited outside the Craft Room.
 .endp
 .nextp
 The coach will depart at 9.00 am.
 .endp

The output produced is as follows:

Check List for Monday, 10th June

(1) Check that

* Luggage contents are correctly listed;

* The luggage is labelled.

(2) Include a first-class stamped postcard.

(3) Arrival at school:

(i) Children should arrive at School between 8.30 and 8.45 am.

(ii) If the coach is not already outside the gates, luggage should be deposited outside the
 Craft Room.

(4) The coach will depart at 9.00 am.

Care must be taken to match each numberpars with an endp, as otherwise strange effects occur.

5.4 White space
There is a directive called blank which can be followed by a number, and which leaves that many
units of vertical white space, unless SGCAL happens to be at the top of a page, in which case it
has no effect. If no number is given, a single unit of space is left. The size of the unit depends on
the style being used (and can be varied); it is normally about two-thirds of the depth of a line.
There is a similar directive called space which leaves a fixed amount of white space, even at the
top of a page, and whose meaning cannot be varied. Examples of these two directives are

.blank
 .blank 3
 .space 2 in
 .space 5 cm

SGCAL Markup for Running Text 15

5.5 Doublespaced output
The directives doublespace and singlespace can be used to specify double and single spacing of
the output, respectively. Single spacing is the default. For many of the standard styles, doublespace
does not give literally double the spacing by default, as this often looks too deep.

5.6 Hyphenation
If a word contains a hyphen character, it is a candidate for splitting across a line break. There is
also aconditional hyphen flag, ‘~’. Its occurrence in a word indicates an allowable splitting point.
If the word is in fact split, a hyphen is inserted; if it is not, the word is closed up. Words may
contain any number of hyphens or conditional hyphens, for example

... photo~type~setter type-faces ...

To prevent a word from being split at a particular hyphen character, precede it with the quote flag
‘@’. For example:

Been there, done that, got the T@-shirt.

Words that contain neither real nor conditional hyphen characters may be split acrosslinebreaks by
means of SGCAL’s hyphenation dictionary. Hyphenation occurs only when the line is sufficiently
‘loose’, that is, when the amount of space in the line is large relative to the number of space
positions. To prevent automatic hyphenation, enclose the word in ‘$nh{ ’ and ‘} ’. For example:

Do not split $nh{hyphenation}.

5.7 Horizontal lines
Printers call straight lines (whether horizontal or vertical) ‘rules’. SGCAL has flags for generating
both kinds of rule, though vertical rules are not supported for plain output. For the simple case of a
horizontal line right across the page, there is a directive called rule.

16 SGCAL Markup for Running Text

 6. Notes, emphasis and indexing

6.1 Footnotes
Footnotes are placed in the input text at the point they are referenced, and SGCAL automatically
supplies numbers for them. The numbers are reset at the start of each chapter. For fancy output
only, you can request that the numbers be reset for each page, provided there are no more than nine
footnotes per page, by including

.set perpagenotenumbers true

at the start of the input. The text of each footnote is enclosed between the directives footnote and
endf, as in the following example:

Footnotes are normally printed at the bottom
 of each page
 .footnote
 Like this.
 .endf
 and separated from the text by a short line.

Footnotes are normally printed at the bottom of each page1 and separated from the text by a short
line. The styles in which the reference numbers are printed, in the body of the text and at the start
of the note, are specified by flags which can be changed by the user. Details are given below in
section 8.2 (Changing a standard style).

6.2 Emphasis
A particular form of marginal annotation commonly found in manuals and other documents that
undergo revision is the ‘emphasis bar’, which is a short vertical line printed in the margin to
indicate where a document has been changed. SGCAL is set up so that any output lines containing
sections of the text appearing between the directives em and nem are marked in this way. This
paragraph is an example. For example,

.em
 The line containing this text will be emphasized.
 .nem

6.3 Indexing
The directive index causes the text that follows it on the same line, together with the page number,
to be written to the index file. This must subsequently be sorted and consolidated by some means
before being reprocessed by SGCAL.

1 Like this.

Notes, emphasis and indexing 17

 7. Displayed Text

Display is a printer ’s word for material that is not part of the running text of a document, but
instead is ‘displayed’ in some special fashion.

7.1 In-line displays
In SGCAL, displayed material that must be printed in sequence with the main text is enclosed
between the two directives display and endd. When processing a display, SGCAL does not
perform its normal line filling, but instead copies the input to the output, line for line. In addition it
ensures that the display does not cross a page break.

At the start of a display the current line length, indent, and so on are the same as in the
immediately preceding text, but any changes that are made inside the display are automatically
cancelled when it is completed. The font is automatically changed to a fixed pitch font, but this can
be changed by the use of ‘$rm{ ’, ‘ $it{ ’, etc. At the end of a display the font reverts to what it
was previously. Here is an example of the input to generate a display:

.display
 1 + 2 + 3 + 4 + 5 = 15
 .endd

By default, SGCAL flags are still interpreted in displayed material, so changes of font can still be
made and tabs (see below) can be used. However, it is sometimes useful to be able to disable this
processing, for example, when including text from other sources. A common case is the inclusion
of computer program fragments, which often make use of the special characters that introduce
SGCAL flags. If the word ‘asis’ is added to the display directive, the displayed text is not scanned
for embedded flags. However, SGCAL directive lines are still recognized – this is necessary, of
course, in order that endd should terminate the display. Here is an example that displays a fragment
of a BCPL program. Without the use of ‘asis’, the ‘$’ and ‘#’ characters would need to be
preceded by ‘@’.

.display asis
 LET hypot(a, b) = VALOF
 $(
 LET hh = a#*a + b#*b
 RESULTIS realsqrt(hh)
 $)
 .endd

It is sometimes desirable to allow very long displays to flow over page breaks. To do this, add the
word ‘flow’ to the display directive:

.display flow
 <many lines of input>
 .endd

The first six lines of such a display always appear on the same page. If both ‘flow’ and ‘asis’ are
needed for a display, ‘asis’ must come second.

.display flow asis
 <many lines of verbatim input>
 .endd

Even though displayed material is copied line for line from input to output, it is possible to request
that individual lines be justified, that is, stretched out to end flush with the right-hand margin, by
increasing the sizes of the spaces in the line. Thenewline directive with the justify option achieves
this.

18 Displayed Text

7.2 Figures and tables

The form of display described above appears in the output at the same point as it appears in the
input. For large amounts of display text it is sometimes more convenient to use a floating display
which appears near but not necessarily at the point of input. Such displays are normally figures
with captions, and SGCAL has two directives for processing them which are used as in the
following example:

.figure This is the figure’s title.
 **
 The text for the figure, normally quite a few lines.
 **
 .endfigure

The output from this example appears as figure 1 below.

**
The text for the figure, normally quite a few lines.
**

Figure 1: This is the figure’s title.

Notice that SGCAL has supplied a figure number automatically. The reference to the figure was
generated by including the following text before the figure:

... appears as figure ~~figurenumber below.

This is an example of the use of the insert flag ‘~~’ to insert the value of an SGCAL variable into
the text. The name of this particular variable is figurenumber.

The endfigure directive can be followed by a dimension. This specifies an amount of extra white
space that is to be left below the figure title.

If there is room on the current page for the figure, it is output immediately. Otherwise it and any
subsequent figures are held over to the top of the next page (even if the subsequent figures would
in fact fit).

Another pair of SGCAL directives is table and endtable. They work in exactly the same way as
figures, except that tables have their own sequence of numbers, held in the variable tablenumber.
The fact that a figure is being held over to the next page does not force tables to be held over (and
vice versa).

7.3 Subscripts and superscripts

Displayed material often requires the use of subscripts and superscripts. Three SGCAL flags are
available for this purpose:

(1) ‘$U’ is the up flag, which causes subsequent text on the line to be raised with respect to what
 went before;

(2) ‘$D’ is the down flag, which causes subsequent text on the line to be lowered with respect to
 what went before;

(3) ‘$L ’ is the level flag, which causes subsequent text on the line to be printed at the normal line
 level.

The ability to print characters above and below the line is only available for fancy output. If one of
the ASCII styles is being used, these flags have no effect. Here is a typical example of their use:

Displayed Text 19

 .display
 H$D$$2$UO + SO$D$$3$L --> H$D$$2USOD$$4
 .blank 2
 e = mc$U$$2
 .endd

The output is

H2O + SO3 → H2SO4

e = mc2

Note the use of the null flag ‘$$ ’ to terminate these flags when a digit follows. This is necessary
because if a number follows the up or the down flag, it is taken as the number of points to move up
or down. If no number is present, the distance moved is one third of the current line depth.

7.4 Tabs
Several different kinds of tab are available in SGCAL. Theindent tab has already been described
above: it tabs to the current indentation position, and is represented by the flag ‘$i ’.

A conventional tab operation is represented by the flag ‘$t ’ in the input. Tab positions are set by
the tabset directive, which is followed by a list of column widths. Here is an example of some
tabbing input:

.display
 .tabset 7em 11em 7em 9em
 1234567890123456789012345678901234567890
 X $t XX $t XXX $t XX $t X
 .endd

The output that is produced is:

1234567890123456789012345678901234567890
 X XX XXX XX X

Any space characters in the input preceding or following the tab flag are ignored. The tabs in the
example above are left tabs, because the portions of text are set with their left-hand edges at the tab
positions. SGCAL also supports right tabs and centred tabs, and these are set in the tabset directive
by typing the letters ‘R’ or ‘C’ following the tab position, respectively. (It is also permitted to type
‘L’ to indicate a left tab explicitly.) Here is an example showing all three kinds of tab:

.display
 .tabset 7em 13em R 11em C 14em
 12345678901234567890123456789012345678901234567890
 X $t XX $t XXXX $t XXX $t XX
 .endd

which produces the following output:

12345678901234567890123456789012345678901234567890
 X XX XXXX XXX XX

Finally, there are two special tabs that are useful in headings and footings, the centring tab and the
ending tab, represented by the flags ‘$c ’ and ‘$e ’, respectively. Any text following the ending tab
on the input line is moved to the right until it ends at the right-hand margin. Any text following the
centring tab, up to the next tab if present, or to the end of line if not, is centred in the current line
width. Thus the input

.display
 the left $c the middle $e the right
 .endd

produces the following output line:

20 Displayed Text

the left the middle the right

7.5 Heads and feet
Headlines are lines that appear at the top of a page, above the main text, and similarly footlines
appear at the bottom. They are used for page numbers and titles of various sorts. The standard
arrangement in SGCAL is to have two footlines, the first being blank and the second containing a
centred line number, and no headlines.

The directive nofoot can be used to suppress the footlines altogether. Alternatively, the size of the
headline or footline areas can be changed by theheaddepth and footdepth directives. Thus, for
example,

.headdepth 3 ld
 .footdepth 4 ld

specifies three headlines and four footlines instead of the default zero and two. The abbreviation
‘ld’ after a number stands for ‘line depths’. The material that appears in the headline area is defined
between the directives head and endhead, for example

.head
 The $c First $e Headline
 .newline
 Another $e Headline
 .endhead

and similarly footlines are defined betweenfoot and endfoot. There may be more than one
occurrence of these directives in an SGCAL input file; at the start or end of a page the most recent
definition is used. If there are not enough headlines to fill the headline area, the bottom is left
blank; if there are not enough footlines to fill the footline area the top is left blank.

The most common use of headlines and footlines is for printing the page number, and this can be
done in SGCAL by including the text ‘~~sys.pagenumber ’ where the page number is required.

Another useful system variable is sys.date, which can be used to insert the date of processing into
the text, as in the following example of footline definition:

.footdepth 3 ld
 .foot
 $c [~~sys.page] $e ~~sys.date
 $bf{FIRST DRAFT}
 .endfoot

It is possible, by using the more advanced features of SGCAL, to cause the page numbers to be
printed in roman numerals, to specify different headlines and footlines for odd-numbered and even-
numbered pages, and to create ‘running’ headlines and footlines.

Displayed Text 21

 8. Advanced Features

The facilities described in previous chapters are enough to cope with many text processing jobs.
There is, however, a lot more to SGCAL. In this chapter some ways of changing the standard
actions described above will be covered, as well as some additional features. New users are advised
to become familiar with the preceding material before reading further.

8.1 Variables
The directives for handling chapters, sections, footnotes and so on make use of variables for
counting. Many other features of the standard styles are controlled by variables. Additional vari-
ables can be defined and used for many purposes, some examples of which are given below. The
set directive is used to define a variable and its contents, which may be a number or a string of
characters. One simple use of a variable is to hold a long string that appears many times in the
document, for example:

.set scal "supercalifragilisticexpialidocious"

This can then be inserted whenever required by simply typing

~~scal

wherever it is needed.

8.2 Changing a standard style
In this section some of the variables and flags which control the standard styles are described. The
may all be changed by the user in order to achieve a different effect.

8.2.1 Numbering chapters and sections
The variables which contain the current chapter, section, subsection and sub-subsection numbers are
called chapter, section, subsection and subsubsection. These can be used in several ways:

(1) If any of them is set to contain a negative number, the numbering of the relevant item is
 suppressed. Thus

.set chapter -1

switches off chapter numbering, while leaving section, subsection and sub-subsection number-
 ing on. It is sometimes useful to turn chapter numbering off for a preface, then turn it on
 again (by setting the variable chapter to zero) just before the call to the chapter directive for
 chapter 1.

(2) A long document can be processed in parts by setting the appropriate chapter or section
 number at the head of each part.

(3) A current number can be saved in a different variable for later use in a reference, or output as
 part of an index entry.

8.3 Display indentation
Displays are automatically indented by an amount specified by the variable displayindent, which
defaults to zero. Thus to indent all displays by 36 points, the following directive would be used:

.set displayindent 36

The indent is always reset on exit from a display.

8.3.1 White space
The amount of vertical white space surrounding headings can be controlled by changing the
following variables:

22 Advanced Features

 chapspaceb space after chapter headings
 sspacea space before section headings
 sspaceb space after section headings
 ssspacea space before subsection headings
 ssspaceb space after subsection headings
 sssspacea space before sub-subsection headings
 sssspaceb space after sub-subsection headings
 fnspace space between footnotes

8.3.2 Heading styles
The styles in which headings appear (large type, bold face, etc.) are controlled by flags which are
placed before each heading text. They are:

$chead{ chapter heading
 $shead{ section heading
 $sshead{ subsection heading
 $ssshead{ sub-subsection heading
 $fkt{ footnote key in text
 $fkn{ footnote key for note
 $ftitle{ figure title
 $ttitle{ table title

The heading texts are always terminated by a closing curly bracket. Before re-defining one of these
flags, it is first necessary to cancel it using the cancelflag directive. Thus, for example, to arrange
for section headings to be in sanserif type:

.cancelflag $shead{
 .flag $shead{ "$ss{"

The variable hnspace contains a string to be inserted between the number of a chapter, section or
subsection and its title. By default this string is a single space, but it can be changed as required.

8.4 Number formats
Page, chapter, section and subsection numbers are normally printed in arabic numerals. Roman
numerals can be requested by means of the format directive, which is followed by the name of the
relevant variable and one of the words ‘roman’ or ‘ROMAN’ for lower or upper case numerals,
respectively. The page number is held in a system variable called sys.pagenumber, because it is
incremented automatically inside the SGCAL program. For example,

.format chapter ROMAN
 .format sys.pagenumber roman

would number chapters in uppercase roman numerals, and pages in lower case. For numbers in the
range 1–26, an alphabetic format is also available, again in either case, specified by the letters
‘alpha’ or ‘ALPHA’ in a format directive.

8.5 Varying heads and feet
Two common requirements for headlines and footlines are the inclusion of the current chapter or
section title, and varying the text on alternate pages. The first of these can easily be done by
making use of the variables chapname, sectname and ssectname, which are automatically main-
tained by SGCAL. The second requires the use of SGCAL’s conditional directive, if. This is a
powerful facility which can be used to test many conditions; the simple requirement here is to test
whether the current page number is odd or even. Its use is best demonstrated by an example, which
places the current chapter title on the left at the top of even-numbered (left hand) pages, and the
current section title at the top of odd-numbered pages. In both cases the titles are forced to be in
the sanserif typeface.

Advanced Features 23

 .head
 .if even ~~sys.page
 $ss{~~chapname}
 .else
 ess{~~sectname}
 .fi
 .endhead

The two parts of the conditional construction are separated by else, and the whole thing is
terminated by fi. Nested conditions are permitted.

When a new chapter or section is being started, SGCAL sets the name variable to the null string
until the title has been output. The above example would therefore result in a null headline at the
start of a chapter and whenever a section started at the top of a page (which is normally what is
wanted).

8.6 Thin and wide spaces
The thin space flag, ‘$<’, can be used to generate a small amount of horizontal space, with a width
approximately one sixth of a normal space (except of course for ASCII output, which does not have
variable spaces). There is also an ‘extra-stretchy’ space flag, ‘$<> ’, which has the width of an
ordinary space, but which, if it appears in a line that is being right-justified, absorbs all the stretch,
leaving the other spaces unaltered. This can be used to force text to the right hand side of the page
at the end of a paragraphs, as follows:

This is the text of the paragraph.
 The quick brown fox jumps over the lazy dog.
 Use the extra-stretchy space at the end,$<>thus.

The output produced is:

This is the text of the paragraph. The quick brown fox jumps over the lazy dog. Use the extra-
stretchy space at the end, thus.

24 Advanced Features

Part II

Full specification of SGCAL

 9. Command line interface

The sgcal command line has a number of options that fall into three categories:

• ‘Normal’ options that are used for the most common used of the program;

• Two special options that are concerned with handling forward references;

• Some additional options that allow alternate library files to be used.

9.1 A ‘normal’ command line
The syntax for the most common calls to SGCAL is as follows:

sgcal [-to < file>]
 [-style < style(s)>]
 [-index < file>]
 [-aside < file>]
 [-define < name>[=< value>] ...]
 [-id | -help]
 [-verbose]
 [[-from] < file(s)>]

The keywords -style, -index, -aside, -define, and-verbose may be abbreviated to their first letters,
and -o is a synonym for -to.

Up to nine input file names, separated by spaces, can be given. They are read in order. If no names
are given, the standard input is read. If no output file is given, there are two possibilities:

• If no input is given, the output is written to the standard output.

• Otherwise,the name of the first input file is used to construct the name of an output file. Any
 existing suffix is removed from the input file name, and then ‘.sgout ’ is added.

The -style keyword can be used to supply the name of a standard style, for example

sgcal myfile -style online

Has the same effect as the line

.library "online"

at the beginning of the first input file. In fact, up to nine file names can be given with the -style
keyword, enabling auxiliary style definition files also to be specified by this means. For example:

sgcal myfile -style a4ps psgreek

The -define keyword can be used to cause named SGCAL variables to be set at the start of
processing. If no value is given for a variable, it is set to ‘true’. The keyword can be followed by
up to nine variable settings, separated by spaces. If fewer than nine are given, and the name of an
input file follows, the -from keyword is required to indicate that it is not another variable setting.
An alternative is to specify the input file first, as in the example below.

Setting variables on the command line can be useful when parameterizing an input file so that its
output depends on which variables are set. For example:

sgcal myfile -define local nofigures

The -index and -aside keywords both define additional output files. For details of the data that is
written to these files, see the descriptions of the index and aside directives in chapter 21. Warnings
are issued if either of the index or aside files are missing when they are required, but SGCAL
continues processing.

The -id option causes SGCAL to output its version number and exit; the -help option causes it to
output a summary of the command line options.

Command line interface 27

The -verbose option requests SGCAL to output, to the standard error file, comments of the form
‘Page <n>’ as it starts to process each page. If the verification output is displayed on a terminal
(the default case) this makes it possible to monitor the progress of a long SGCAL run.

9.2 Handling forward references
If your input file contains forward references, you will need to run SGCAL twice so that they can
be resolved. Any variable setting in the source that is referenced earlier than its definition must be
set using the rset directive, instead of the ordinary set. (See sections 21.59 and 21.66 for the
specification of these directives.)

For the first pass, SGCAL must be called with the -rsetout option, followed by the name of a
scratch file. For example:

sgcal -rsetout /tmp/sgtemp myfile.sgcal

The values of therset variables are written to the scratch file, and no errors are generated for
references to unset variables.

For the second pass, SGCAL must be called with the-rsetin option, referencing the same scratch
file. This reads the previously saved definitions at the start, so that the forward references can now
be correctly substituted.

In some cases, inserting the value of a forward reference may change the page layout of the
document, and this may affect the value of subsequent forward reference variables. The way to
handle this is to supply both -rsetin and -rsetout for the second pass, and check for any changes.

All this housekeeping for forward references is handled for you if you call the sgcal-fr script
instead of sgcal. Its parameters are the same as for a ‘normal’ SGCAL call; it handles all the
-rsetin and -rsetout stuff automatically, using scratch files in /var/tmp. The sgcal-fr command
runs SGCAL up to three times:

• If the scratch file is empty after the first pass, it implies there were no rset variables. A
 second pass is not needed, so the script exits.

• After the second pass, the new values of therset variables are compared with the old; if they
 are the same, the script exits.

• Otherwise,a third pass is done. If there is a discrepancy this time in the variable values,
 sgcal-fr gives up.

sgcal-fr requires the input to be a file or files, so that they can be read multiple times. It does not
work for the standard input.

9.3 Using alternate library files
Options are provided for changing the locations of various data files that SGCAL uses. The default
location for these files is compiled into the binary. The default location is likely to be under
/usr/local; below we show the default paths when the overall ‘prefix’ is just /usr/local. You only
need these options if you want to use versions of the files that are different from those whose paths
are built in to SGCAL.

• -afmlib specifies the directory in which AFM files may be found (/usr/local/share/sgcal/
 AFM/). These are files that specify the widths of characters in a font in an Adobe standard
 format. For the 36 standard PostScript fonts, SGCAL has character width data in its own
 format in its own ‘font library’. For other fonts, you need to put an indirection into the
 SGCAL font library to make it search for an AFM file. See chapter 26 for details.

• -hyphendata specifies the file that contains SGCAL’s indexed hyphenation dictionary
 (/usr/local/share/sgcal/HyphenData).

• -enclib specifies the directory in which font encodings for files whose width data is obtained
 from AFM files is found (/usr/local/share/sgcal/Encoding).

28 Command line interface

 • -fontlib specifies the directory in which SGCAL’s font information directory is found
 (/usr/local/share/sgcal/).

• -library specifies the directory in which SGCAL’s library files can be found
 (/usr/local/share/sgcal/).

Except for -hyphendata, which names a single file, all these options name directories, and in fact
they may list a number of directories, separated by spaces or colons. When looking for a particular
file, each directory is searched in turn, from left to right.

9.4 Return codes from SGCAL
SGCAL issues the following return codes:

0 Success
 4 Warnings only
 8 Serious errors
 12 More than 40 serious errors; run abandoned
 16 Internal disaster; run abandoned

The multiples of four are a historical relic from the IBM mainframe days.

Command line interface 29

 10. Overview of SGCAL processing

This chapter contains information about the general format of SGCAL input files and howthey are
processed. Details of particular directives and flag sequences are given in later chapters.

10.1 Input line format
Input to SGCAL consists of a mixture of text to be processed and markup, that is, additional
information that tells SGCAL how the document is to be formatted. Input files are considered line
by line. There are two kinds of line: directive lines and text lines. Directive lines are those that
begin with the directive flag, which consists of a single full stop. For example,

.library "a4ps"

is a directive line. Such lines contain large scale instructions to SGCAL; they are used, for
example, to start a new chapter, begin a footnote, or change the indentation.

All lines that are not directive lines (i.e. do not begin with a full stop) are text lines. They contain
the text which is to be formatted, possibly interspersed with markup flags, whose form is described
in section 10.4.

10.2 Standard styles
The SGCAL program itself provides a basic set of facilities for formatting paragraphs and pages. It
does not contain directives for laying out ‘higher level’ objects such as sections and chapters. Such
features are provided by a set of standard styles which exist the the SGCAL library. It is assumed
in most of this document that a standard style is in use. However, users are free to create their own
styles, possibly by modifying one of the standard ones, if the facilities provided are insufficient.

10.3 Macros
A macro is a sequence of SGCAL input lines that has been encapsulated and given a name. This
name can then be used as if it were one of SGCAL’s built-in directives. For example, if a macro
called mymacro has been defined to contain the lines

The quick brown fox jumps over the lazy dog.
 Pack my box with five dozen liquor jugs.

then whenever SGCAL encounters an input line of the form

.mymacro

it behaves exactly as it would if this line were replaced by the two lines above. Macros can be
defined with arguments, which can cause variations to be made to the text each time the macro is
called. Macros are heavily used in the definitions of the standard styles. Details of the macro
facility are given in section 21.42.

A macro can be given the same name as one of SGCAL’s basic directives, in which case it
overrides the directive. However, the basic directive can still be accessed by following the leading
dot with a percent sign. Thus, for example,

.newline

obeys a macro called newline if one exists; otherwise it obeys the basic newline directive.
However,

.%newline

always obeys the basic newline directive.

The processing of macros (and included files –see section 21.32 and 21.37) happens at an early
stage, and the main part of the SGCAL program processes a single sequential stream of input lines.

30 Overview of SGCAL processing

10.4 Flags
Flags are particular sequences of characters which are recognized in lines of input and which cause
some special action, such as the insertion of the contents of a variable, or a change of font. For
example, using the standard styles, the character string $it{ causes subsequent text to printed in
italic, until the character } is reached.

Most of the flag strings can be defined to suit the user ’s taste. The flags can be considered in three
types, depending on the time at which they are recognized:

• The join flag is recognized only at the end of a line just read from an input file. It causes the
 next external line to be joined on as though it were part of the current line.

• The insert flag is recognized when scanning a line for inserted variables. This happens to both
 directive and text lines.

• All other flags are recognized in text lines only.

Details of particular flags are given in chapter 20 (Basic flags).

10.5 Case sensitivity
SGCAL input is case-sensitive. All names of directives and flags must be entered in the correct
case. In practice, all the basic directives have lower case names, as do all the macros in the
standard styles. The set of standard flag strings, however, makes use of both lower and upper case.

10.6 The setup section
The stream of input lines presented to SGCAL is in two parts: an initial setup section, followed by
the main portion. The setup section must contain all the font bindings and the setting of page
offsets (if required). These may not occur later in the input. The setup section is terminated by the
occurrence of the first non-blank text line, or the directive endsetup. It consists, therefore, of any
number of directive lines, possibly interspersed with blank lines.

10.7 Empty lines
Within the setup section, empty input lines are ignored. Within the main part of the text, empty
input lines are converted to directive lines of the form

.newpar

This normally results in the start of a new paragraph, but the user may define a macro called
newpar to specify different or additional action.

10.8 Tab characters in input
Tab characters in input lines are expanded into an appropriate number of space characters,
assuming a tab stop every eight characters. This is done to accommodate text editors that insert tabs
into files. Note that tab characters donot cause SGCAL to perform tabbing operations, which must
be notated using the various tab flags (see sections 20.1, 20.6, 20.7, 20.12, 20.22, 20.40, and
21.70).

10.9 Processing of input lines
SGCAL processes its input sequentially, substituting the lines of a macro definition whenever a
macro call is encountered. The sequence of events is:

(1) The next input line is obtained from the current input file or current macro, as appropriate.

(2) If input is from a file, the line is examined to see if it ends with the join flag (default string
 +++). If it does, the next line is read and joined on to it (the join flag being removed, of
 course). This operation is repeated if necessary. The maximum total input line length is 1024
 characters. Longer input lines are arbitrarily split, and a warning message is output.

Overview of SGCAL processing 31

 If input is from a macro, the join processing is not carried out. However, the join flag can be
 used in macro definitions, as it will be processed when the macro is first read in.

(3) The start of the line is examined to see whether it begins with the directive flag (a full stop),
 and it is thereby classified as a directive line or a text line. If it is a directive line in which the
 initial full stop is followed by a space character, no further processing is done on the line at
 all. This provides a means of inserting comments into SGCAL input files.

(4) If the line is a genuine directive line, it is scanned for insertions. An insertion is recognized
 when an instance of the insert flag (default string ~~) is immediately followed by a letter or a
 digit. The appropriate system or user variable is inserted into the line, as described in chapter
 13 (Variables). To prevent recognition of the insert flag in a directive line, it can be preceded
 by the quote flag (whose default is the single character @).

After a directive line has been processed for insertions, the name of the directive is extracted.
 If the directive flag at the start of the line is followed by a percent character, the name that
 follows is taken as the name of a basic, built-in directive. Otherwise, if the name immediately
 follows the directive flag without an intervening percent character, a search is first madefor a
 macro directive of that name, and only if that fails is the name interpreted as a basic directive
 name.

Because directive lines are scanned for insertions before the name of the directive is extracted,
 it is possible for an insertion to change the name of a directive. It is also possible for an
 insertion to cause a space to appear immediately after the directive flag, thus turning the
 directive line into a comment, which is then not processed further (though all insertions in the
 line are done before this check is applied).

If the directive is a macro directive, SGCAL arranges for the lines that make up the macro
 body to be processed next. Otherwise, if the directive is one of the built-in basic directives,
 the appropriate action is taken. Details of the individual basic directives are given in chap-
 ter 21.

Note that flags other than the insert and quote flags are never recognized in directive lines.

(5) When a macro directive is obeyed, the remainder of the line following the name is read as a
 series of arguments for the macro. Different macros have different numbers of arguments. A
 space character in the line separates different arguments, unless the text for a particular
 argument is enclosed in double quotes. However, when the final argument of the macro is
 reached, the entire remainder of the line is assigned to it, whether or not it is enclosed in
 quotes.

(6) If the line is a text line, it is firstly scanned for insertions, exactly as a directive line. Then it
 is re-scanned for occurrences of any other flag sequences (thus a flag sequence is recognized
 in inserted text). Finally, it is added to the buffer in which the current paragraph is being built.

The above description applies to the majority of input lines, but there are some directives which
cause the lines which follow them to be processed in a different manner.

The if directive can be used to cause portions of the text to be skipped, and not included in the
output. The lines in the skipped portion are not normally processed at all, but if a macro directive is
encountered in these lines, it is expanded into its constituent lines (except in one special case,
described below). This makes it possible to define macro pairs which include the conditional
directives if, else, elif, and fi within their bodies.

The special case where a macro is not expanded while skipping lines is when the macro is already
active. This makes it possible to write recursive macros, that is, macros which call themselves,
either directly or indirectly.

The aside, call, and longcontrol directives cause a number of following lines to be processed
specially. Inserts and macro expansions are applied to these lines, but no other processing is done.

32 Overview of SGCAL processing

10.10 Special characters
The character flag (see section 20.8) provides a means of entering up to 256 different text
characters. The effect of printing any character on an output device is dependent on the device
itself. The common characters (letters, digits, punctuation) normally follow the ASCII encoding, and
are the same on most devices.

PostScript printers are special, in that their standard fonts contain characters which do not have a
default encoding, and the user may specify which codes correspond to which characters, on a per-
font basis, changing the default encoding if necessary.

SGCAL, in combination with sgtops, uses the standard PostScript encoding for those characters
which do have standard codes. For text fonts that use the standard encoding, the following
additional codes are defined:

0 Á Aacute 1 Â Acircumflex
 2 Ä Adieresis 3 À Agrave
 4 Å Aring 5 Ã Atilde
 6 Ç Ccedilla 7 É Eacute
 8 Ê Ecircumflex 9 Ë Edieresis
 10 È Egrave 11 Í Iacute
 12 Î Icircumflex 13 Ï Idieresis
 14 Ì Igrave 15 Ñ Ntilde
 16 Ó Oacute 17 Ô Ocircumflex
 18 Ö Odieresis 19 Ò Ograve
 20 Õ Otilde 21 Š Scaron
 22 Ú Uacute 23 Û Ucircumflex
 24 Ü Udieresis 25 Ù Ugrave
 26 Ÿ Ydieresis 27 Ž Zcaron
 28 Ý Yacute 29 Ð Eth
 30 Þ Thorn 31 ™ trademark

128 á aacute 129 â acircumflex
 130 ä adieresis 131 à agrave
 132 å aring 133 ã atilde
 134 ç ccedilla 135 é eacute
 136 ê ecircumflex 137 ë edieresis
 138 è egrave 139 í iacute
 140 î icircumflex 141 ï idieresis
 142 ì igrave 143 ñ ntilde
 144 ó oacute 145 ô ocircumflex
 146 ö odieresis 147 ò ograve
 148 õ otilde 149 š scaron
 150 ú uacute 151 û ucircumflex
 152 ü udieresis 153 ù ugrave
 154 ÿ ydieresis 155 ž zcaron
 156 ý yacute 157 ð eth
 158 þ thorn 159 © copyright
 160 € Euro

209 ¼ onequarter 210 ½ onehalf
 211 ¾ threequarters 212 ¦ brokenbar
 213 ¹ onesuperior 214 ² twosuperior
 215 ³ threesuperior 216 ¬ logicalnot
 217 ± plusminus 218 − minus
 219 ÷ divide 220 × multiply
 221 ° degree 222 µ mu
 223 ® registered

SGCAL and sgtops also make some additional encoding definitions for the ZapfDingbats PostScript
font. The following are added:

Overview of SGCAL processing 33

 0 ❮ a205 1 ❰ a206 2 ❯ a85
 3 ❱ a86 4 ❲ a87 5 ❳ a88
 6 ❨ a89 7 ❩ a90 8 ❬ a91
 9 ❭ a92 10 ❪ a93 11 ❫ a94
 12 ❴ a95 13 ❵ a96

10.11 Paragraph processing
SGCAL collects the text of an entire paragraph in store before splitting it up into lines and
allocating those lines to a page. The end of a paragraph is indicated by one of the directives
newline, newpar, newcolumn, newpage, space, cspace, or multicolumn, or by a change in the
line filling state, or by reaching the end of the input.

SGCAL does not normally generate paragraphs where the final line contains only a single word,
unless the word is wider than 18 points.

When SGCAL is not filling lines, that is, when each line of input corresponds to one line of output,
the behaviour is as if there were a newline directive immediately before each text line. (Note that
this is not the same as a newline directive after each text line– it means that thenosep directive
can be used when filling is disabled.)

There are two parameters which control the way in which paragraphs are allocated to pages; they
are called minparB and minparT. When a paragraph is complete, SGCAL checks to see whether
there is enough room on the page for the entire paragraph, or at least minparB lines. If not, it starts
a new page.

If SGCAL can fit only part of the paragraph on the current page, it checks the number of lines that
will be printed on the following page. If this is less thanminparT lines, then one line less is printed
at the bottom of the first page. If this would result in fewer than minparB lines appearing on the
first page, then the entire paragraph is printed at the start of the second page.

The default values forminparB and minparT are both 2, and there is currently no way of changing
them. This means that, provided paragraphs are longer than one line, neither ‘widow’ nor ‘orphan’
lines are generated. Vertical page stretching (see below) can often smooth out the appearance of
pages where one line has been moved forward to improve the appearance of the following page.

The way paragraphs are handled means that certain variables are effectively updated only after a
paragraph is complete. For example, the variable sys.pagenumber contains the number ofthe page
on which the previous paragraph ended. If its contents are inserted into the middle of a paragraph,
this may or may not be the number of the page on which it is printed. The variable
sys.usedonpage, which measures how much of a page has been used, is similarly only updated at
the end of a paragraph.

Certain directives are synchronized with the text in a paragraph. For example, the directives for
changing the indentation and line length can be included in the middle of a paragraph, and they
will take effect at the start of the next output line following the point at which they appear. Other
directives are not so synchronised; changing the line depth in the middle of a paragraph, for
example, affects the whole paragraph.

10.12 Tab processing
The processing of tabs (as specified by SGCAL flags, not by tab characters in the input) is delayed
until SGCAL is splitting up a paragraph into lines. The tab positions are therefore relative to the
output lines being generated. For indenting, absolute, centring, and line-ending tabs, SGCAL will
start a new output line if necessary.

10.13 Page processing
SGCAL collects together all the lines for a page (more strictly, for a single column on a page)
before outputting any of them. This allows it to stretch the page vertically by slightly increasing the
line spacing, which improves the appearance of pages that are marginally shorter than the defined
depth.

34 Overview of SGCAL processing

10.14 Galley-style output
SGCAL does not support a true galley mode because it is designed to do formatting on a page-by-
page basis, and this does not fit will with the idea of a galley mode. However, an approximation
can be achieved by setting the ‘galley’ option.

The output is still produced page by page, but conditional space at the tops of pages is not
suppressed, and no formfeeds are generated at the start of plain output pages. Normally, SGCAL
fills up plain output pages by generating appropriate amounts of white space. This is suppressed
when the ‘galley’ option is set. In addition, footnotes are stored up and printed at the end of the
final page.

The ‘galley’ option is controlled by the enable and disable directives (see sections 21.15 and
21.13). The ‘online’ standard style makes use of it.

10.15 Footnote processing
By default, an output line and all the footnotes associated with it are always printed on the same
page. When there are many footnotes, or long footnotes, this can lead to unacceptable amounts of
white space at the bottoms of pages. There is an option for requesting split footnotes which
removes the constraint that a footnote must appear on the same page as the line which which it is
associated. This option also permits individual footnotes of more than four lines to be split over
more than one page.

The standard macro splitfootnotes (see chapter 16) is the normal way of controlling this option,
though the underlying control is via the enable and disable directives (see sections 21.13 and
21.15).

The footnote splitting facilities are somewhat experimental. When a paragraph and its footnotes do
not entirely fit on the current page, there are often many different ways of dividing up the text and
the footnotes. The existing rules are not very sophisticated and may be altered in the light of
experience. (But nothing has changed in the last ten years!)

Overview of SGCAL processing 35

 11. Types of output and dimensions

SGCAL can produce two kinds of output: plain output is a straightforward text file which can be
read using a text editor; GCODE output is a device-independent encoded form of output which
must be processed by another program (e.g. sgtops) in order to view or print it. Certain facilities in
SGCAL (e.g. sub/superscripts, multicolumning) are not available for plain output.

SGCAL works internally in millipoints (there are 72000 millipoints to an inch), whichever form of
output is being generated. When plain output is being produced, the width of characters is assumed
to be 6 points, and the depth of lines 12 points.

Unadorned dimensions specified in directives are always taken as points. Thus, for example,
specifying

.linedepth 13

always sets a line depth of 13 points. Such dimensions are rounded to the resolution of the output
device. In the case of plain output, this would be rounded to 12 points.

It is possible to specify units for dimensions in directives. The following are recognized:

pt points
 pica picas – one pica is 12 points
 in inches
 cm centimetres
 em ems
 en ens
 ld linedepths

An em is the width of an ‘exact space’ in the current font, while an en is half an em, except in
plain mode, when both are equal to 6 points. Here are some examples:

.indent 20 indent 20 points
 .indent 20 em indent 20 ems
 .space 5 pt space 5 points
 .space 5 ld space 5 line depths
 .space 1 in space one inch

The recognition of dimensions is done at a very low level in the expression decoder. Therefore a
directive such as

.set var 5.5 cm

is permitted. The value placed in the variable var would be 155.905.

Dimensions are also used as arguments for certain flag strings. In these cases, the values given
must always be in points, optionally with a fractional part.

36 Types of output and dimensions

 12. The SGCAL environment

The set of parameters which control how SGCAL formats pages is known as the environment.
There are three kinds of environment parameter:

• Global environment parameters are values which are not expected to change very often during
 processing, and on the whole they relate to the overall layout of pages. Examples of these are
 the page depth, the head and foot depths, and the page offsets.

• Local environment parameters are values which are changed from time to time as the
 document is processed. Examples of these are the current font, the current indent, and whether
 or not output lines are to be right-justified.

• Temporary environment parameters are those that cause a temporary change to the environent.
 Currently the only ones available are those that affect the indent and the line length.

Frequently it is necessary to change a value in the local environment and later to restore the
previous value. SGCAL provides a stacking mechanism for this. There are both directives and flags
to ‘push’ and ‘pop’ the contents of the local environment, and these are used heavily in the
standard styles.

The components of the local environment are a number of switches and a number of values. Many
(but not all) of the switches are controlled by the enable and disable directives. The remainder are
controlled by individual directives or flags. The switches control the following:

forcing capital letters
 emphasizing each output line
 filling output lines by joining and splitting input lines
 filling output pages by stretching the space between lines
 the ‘galley’ option
 interpreting flags in text lines
 automatic hyphenation
 forcing automatic hyphenation of all words
 kerning of letter pairs
 checking letter pairs for ligatures
 underlining
 joining of the next text line without a break (nosep)
 splitting of footnotes between pages
 using formfeed characters in plain output

The values in the local environment are

the number of the current font
 the number of the current font group
 the justification option (left, right, both or centre)
 the current set of tab stops
 the current indent
 the current line length
 the current line depth
 the current paragraph looseness
 the minimum number of paragraph lines at the top and bottom of a page
 the paragraph indent
 the paragraph space
 the greyness or colour of text, rules, and filled shapes
 the width of rules

These switches and values are all preserved over a push/pop operation. Other environmental
parameters are not preserved.

Note that the temporary indent and line length (and associated counts) are not in the local
environment.

The SGCAL environment 37

 13. Variables

SGCAL supports two kinds of variable: user variables, and system variables. User variables have
names beginning with a letter and containing letters and digits. The standard styles make use of a
number of user variables (see chapter 15). System variables have names beginning with sys. , for
example, sys.pagenumber .

All variables contain characters strings which can be inserted into both text and directive lines by
means of the insert flag (default string ~~). For example,

~~myvar insert contents of myvar
 ~~sys.time insert the current time

System variables are maintained by SGCAL and cannot be directly changed by the user. User
variables can be set by the set directive. The value for a variable may be specified as a string, or it
may be specified as an expression which is evaluated and then converted into a string represen-
tation. For example,

.set abc "02 + 2"

sets the value of the variable abc to ‘02 + 2 ’, but

.set xyz 02 + 2

sets the value of the variablexyz to ‘4’, because it evaluates its argument as an arithmetic
expression.

User variables can have a format associated with them. The default format is simply to insert the
variable’s character string as it is. The alternative formats are for Roman numerals and ‘letter ’
numerals. If one of these formats is specified and the variable’s character string consists entirely of
digits and is in the appropriate range, it is converted to roman numerals or a letter as appropriate,
before each insertion. More details are given in section 21.25.

It is always possible to force the insertion mechanism to insert the basic character string for a user
variable, even if its format is not the default. This is done by preceding its name with ‘raw. ’ For
example,

.set romannumber ~~raw.romannumber + 1

would be the way to increment a variable which is normally inserted in roman numerals.

38 Variables

 14. Expressions

Expressions can occur as arguments to a number of directives (see chapter 21). Expressions are not
recognized in any context in text lines. It is, however, always possible to achieve the effect of an
expression in a place where one is not permitted by assigning the value of the expression to a
variable (using the set directive), and then inserting that variable where the value of the expression
is required.

The constituents of an expression are values and operators. Round brackets can be used for
grouping in the normal way. The recognized types of value are:

strings enclosed in double quotes
 numbers written in conventional notation
 truth values written as true or false

An explicit length may be given for a string by following it with a number in round brackets. The
string is extended with space characters if necessary. A second number, separated by a comma, may
also appear within the same brackets. This specifies a starting offset within the given string,
counting from one. In the following example, all the strings are equivalent:

"abcd"(2,1) "abcd"(2) "cdab"(2,3) "cdab"(,3) "ab"

A string may be forced to upper case by preceding it by a circumflex character. Within a string, a
double quote character is represented by doubling. Whenever a variable containing a double quote
is inserted into a directive line between double quotes, its double quote is inserted twice.

For the purposes of logical operations, false is taken as a value of zero, and true as a value of
one. However, tests assume that any non-zero value corresponds to true .

Numbers may be written with a decimal point and a fractional part. SGCAL works with fixed point
numbers, to three decimal places, to make it straightforward to handle points and millipoints.
However, those operators which do bit manipulation operate only on the integer part of their
arguments, clearing any fractional part to zero.

The following unary operators are provided:

set < name> test whether variable <name> is defined
 odd < number> test whether number is odd
 even < number> test whether number is even
 length < string> compute length of string in characters
 width < string> compute width of printed string
 + < number> unary plus operator
 - < number> unary minus operator
 ~ < number> unary bit negation operator
 ! < number> unary logical negation

The length operator returns the number of characters in its argument, while the width operator
returns a dimension (in points) which is the width that its argument would occupy if printed in the
current font. In both cases, the string is taken literally– because expressions occur in directive
lines, no flag processing (other than inserts) takes place in these strings. Because of this, these
operators should be used with care.

The following binary operators, shown with their binding priorities, are provided:

0 || logical ‘or ’
 0 | logical ‘or’ (synonym)
 1 ^ logical exclusive ‘or ’
 2 && logical ‘and’
 2 & logical ‘and’ (synonym)
 3 != not equal
 3 <> not equal (synonym)
 3 ~= not equal (synonym)

Expressions 39

 3 == equal
 3 = equal (synonym)
 3 >= greater than or equal
 3 <= less than or equal
 3 > greater than
 3 < less than
 4 round rounding operator
 5 - subtraction
 5 + addition
 6 / division
 6 * multiplication
 6 % remainder (modulo)

The rounding operator is used in the standard styles for rounding dimensions to the resolution of
the output device. SGCAL does such rounding internally when, for example, a line depth is set, but
it is useful externally when computing the values of variables that hold dimensions.

Operators of equal priority are evaluated from left to right. The comparison operators can be used
between two numbers or two strings. The truth values are considered to be numbers for this
purpose.

40 Expressions

 15. Standard styles

SGCAL is designed to be used with astyle definition which sets up the basic parameters of the
output layout and defines character sequences for the flags. A style is selected either by means of
the -style option on the command line, or by means of the library directive. The following
standard styles exist:

a4ps for A4 page size on a PostScript output device
 a5ps for A5 page size on a PostScript output device
 printer ‘plain’ output suitable for a lineprinter
 online ‘plain’ output suitable for an online file
 sgpoint for full-screen slides for projection

Each of these styles sets up a suitable page size and font flags for the output device, and then
defines a standard set of macros and flags. However, the set used for thesgoint style is somewhat
different to those used for the other styles.

If the library directive is used to request a standard style, then (if relevant) certain variables can be
set beforehand to alter the default typeface and line spacing. These variables are as follows (default
values are shown in square brackets):

typeface main typeface family [‘Times’]
 sanstypeface sanserif typeface family [‘Helvetica’]
 maintypesize size of the main typefaces [11 (A4) or 10 (A5)]
 fntypesize size of footnote typefaces [9]
 typespacing main line depth [typesize plus one point]
 fntypespacing footnote line depth [footnote type size]
 fnsuptypesize size of footnote superscripts [typesize times (7/11)]

For example,

.set typeface "Palatino"
 .set typespacing 12
 .library "a5ps"

Basic SGCAL directives can be intermixed with the macros set up for a standard style, but this
must be done with care, as the standard styles make certain assumptions about their environment.
For example, at the start of each chapter or section, the environment is reset to the ‘top’ level; a
local change to the environment which is expected to persist into the next section may not do so.

Another example of a mixing of basic and macro directives that does not work is the explicit use of
the contiguous directive to surround large textual items such as sections. The macros for starting
sections have checks to ensure that they are not called inside contiguous sections, in order to
diagnose terminating directives that have been accidentally omitted.

Standard styles 41

 16. Standard macros

The following macro directives are available in all the standard styles except the sgpoint style,
which has its own special set of macros.

16.1 Aspic and endspic

.aspic
 <Aspic drawing instructions>
 .endspic

If SGCAL is generating fancy output, the drawing instructions are passed to the Aspic program,
which analyses the drawing and returns lines of input for SGCAL to process. If SGCAL is
generating plain output, the text ‘<<picture omitted>>’ is substituted.

These macros automatically include the drawing inside a display (see section 16.8 below) and
ensure that any indentation is set to zero. Text in the drawing is set in roman type by default, but
the usual flags can be used to change this.

16.2 At

.at < numeric-expression>

This macro generates a space directive with a suitable positive or negative argument so that the
next line to be printed appears at the absolute depth on the page given by the argument to at. It is
useful for laying out pages to a fixed specification.

16.3 Blank

.blank [< numeric-expression> [line[s]]]

This macro inserts conditional vertical blank space. The amount is calculated by multiplying the
given numeric expression by half the current line depth, unless the word ‘line’ or ‘lines’ is present,
in which case the whole line depth is used. The actual quantity of space output is sufficient to make
the white space at the current point at least as deep as the calculated amount, except at the top of a
page, where nothing at all is output (except in ‘galley’ mode). The default argument for blank is
‘1’. The <numeric-expression> should not contain any spaces; if it does, it should be enclosed in
double quote characters, as otherwise the first space enountered terminates the first macro
argument.

16.4 Box

.box < text>

The given text string is output enclosed in a rectangular box, provided the output medium is
capable of supporting this (in plain text it is not). Otherwise the text is underlined. The string is
never split over more than one line.

16.5 Chapter and chapenv

.chapter < title>

The chapter macro defines the start of a new chapter. The chapenv macro defines the environment
in which the title is printed. The standard style definitions should be consulted for details.

42 Standard macros

16.6 Chapternotes

.chapternotes

This macro requests that all footnotes be saved up and printed at the end of each chapter, instead of
at the end of each page.

16.7 Columns

.columns < integer-expression>

This macro sets the number of columns on a page, and adjusts the footnote linelength and the
emphasis point appropriately. For further details, see the multicolumn basic directive in section
21.43.

16.8 Display and endd

.display [flow] [asis] [rm]
 <text lines>
 .endd

These macros are used to define displays – lines of text that are not filled and which are left
justified. They are printed all together on one page, unless the ‘flow’ option is given, in which case
a page break is permitted after the first few lines.

The ‘asis’ option disables the recognition of flags in the text lines that make up the display, though
not the recognition of the directive flag.

At the start of a display, the font is set to the font number set in the variable displayfont
(which defaults to the typewriter font) unless the ‘rm’ option is given, in which case it is set to the
roman font.

The options are all optional, but if more than one is present, they must be in the order shown
above.

At the start of a display, the current local environment (see chapter 12) is pushed onto the stack,
and at the end it is restored. Therefore any changes that are made within the display do not
propagate beyond it.

White space is automatically inserted at the beginning and end of displays. The amounts are
contained in the variablesdisplaystartspace and displayendspace, which can be altered if desired.
The default values for both variables are half the normal line depth.

16.9 Displayenv

.displayenv < font number>

This macro should not be called directly by the user. It is called by display to set up the
environment, and its default definition is

.macro displayenv ""
 .%disable filling
 .%justify left
 .%indent ~~sys.indent + ~~displayindent
 .%font ~~1
 .%nosep
 .endm

It can be deleted and re-defined by the user as necessary.

Standard macros 43

16.10 Doublespace

.doublespace

This macro sets the current line depth to 1.5 times the typespacing value, and forces a new line to
be started.

16.11 Em and nem

.em
 .nem

These two macros are shorthand for

.enable emphasis
 .disable emphasis

respectively. See the description of enable and disable in sections 21.13 and 21.15.

16.12 Endnotes

.endnotes

This macro requests that all footnotes be saved up and printed at the end of the whole document,
instead of on each page.

16.13 Figure and endfigure

.figure "< title>" [rm]
 <text>
 .endfigure

Figures differ from displays in that they are not constrained to appear inline in the output. If there
is not enough room on the current page, a figure will be held over and printed at the top of the next
page.

The title is printed below the figure, and it is automatically numbered. The number of the next
figure is held in the variable figurenumber. If this value is set negative, figure numbering is
suppressed. If the variable figuretitle is set to the value ‘false’, then figure titles are not printed.

16.14 Footnote and endf

.footnote
 <text lines>
 .endf

These macros are used to define footnotes. They automatically number the notes and arrange to
output the numbers appropriately. The footnote numbers are reset at the start of each chapter,
except in ‘galley’ mode and after .endnotes has been obeyed.

Normally, footnotes are output at the foot of the current page, and each footnote is complete on one
page. The splitfootnotes macro can be used to vary this.

In addition, the chapternotes and endnotes macros can be used to request that footnotes be printed
at the ends of chapters or at the end of the entire document, respectively.

By default, footnotes are numbered sequentially through chapters, or through the entire document if
endnotes is used. However, for fancy output only, it is possible to specify that the footnotes on
each page are separately numbered, starting from 1, by including

.set perpagenotenumbers true

at the nead of the document. This facility assumes that there are never more than nine footnotes per
page, since it allocates space for just one digit for each number.

44 Standard macros

16.15 Footnoteenv

.footnoteenv

This macro should not be called directly. It is called by the footnote macro at the start of each
footnote, to set up the footnote environment, and by default its definition is

.macro footnoteenv
 .%linedepth ~~fntypesize
 .%fontgroup 2
 .%font 0
 .%linelength ~~fnlinelength
 .%indent ~~fnindent
 .%justify both
 .%enable filling
 .endm

It can be deleted and re-defined by the user if a different environment is required.

16.16 Nofoot

.nofoot

This macro cancels any defined foot lines and sets the foot depth to zero.

16.17 Numberpars, nextp and endp

.numberpars [< type>]
 <text>
 .nextp
 <text>
 .endp

This set of macros provides for automatically numbered, indented paragraphs. If the type is
unspecified, arabic numbering is used. The alternative types are

roman lower case Roman numerals
 ROMAN upper case Roman numerals
 alpha lower case letters (a, b, c, etc.)
 ALPHA upper case letters

If the type is anything else, it is used as a string to mark the paragraphs. Thus it can be used to
supply a ‘bullet’ if required. By default, the paragraph numbers are printed in round brackets. This
can be altered by redefining the flag $npbracket which should be defined with two strings, one
for before each number, and one for after. For example,

.cancelflag $npbracket
 .flag $npbracket "[" "]"

arranges for square brackets to be used instead of round ones, while

.cancelflag $npbracket
 .flag $npbracket "" "."

causes them to be followed by a full stop, with no preceding characters. This flag is used only
when paragraphs are actually being numbered, in any printing format. It is not used if an arbitrary
string is being used to mark the paragraphs.

White space is automatically inserted before each numbered paragraph, and after the last one. The
amount is controlled by the npspace variable, whose contents default to half the line depth.

The numberpars, nextp and endp macro directives can be used in a nested fashion; that is, within
one set of numered paragraphs, another may be enclosed.

Standard macros 45

16.18 Pagenumbers

.pagenumbers centre
 .pagenumbers atedge

This macro sets up a foot depth to be twice the current line depth, and defines a single foot line
containing the page number, either in the centre of the line, or at the lefthand or righthand edge,
depending on whether the number is odd or even. The default is centred page numbers.

16.19 Rule

.rule

This macro causes a horizontal rule (that is, a straight line) to be drawn from the current indent to
the current line length, followed by a call to the blank macro. Details of more complicated rules
are given in sections 20.20, 20.38, and 20.43. SGCAL is also capable of drawing curved lines – see
section 20.3.

16.20 Section and sectenv

.section < title>

The section macro defines the start of a new section. The sectenv macro defines the environment in
which the title is printed. The standard style definitions should be consulted for details.

16.21 Singlespace

.singlespace

This macro sets the current line depth to the original typespacing value, and forces a new line to be
started.

16.22 Splitfootnotes

.splitfootnotes on | off

This macro controls whether footnotes must appear in toto on the same page as their associated
lines, or whether they may be separated from them, or split into more than one piece. ‘On’ implies
that splitting is permitted, ‘off ’ that it is not. The default is to keep footnotes and their lines
together (i.e ‘off ’). The macro may be used several times in a single source, to change the state for
different parts of the document. The new state applies to the current paragraph and any subsequent
paragraphs. (See section 10.15 for further information.)

16.23 Subsection and subsectenv

.subsection < title>

The subsection macro defines the start of a new subsection. The subsectenv macro defines the
environment in which the title is printed. The standard style definitions should be consulted for
details.

16.24 Subsubsection and subsubsectenv

.subsubsection < title>

The subsubsection macro defines the start of a new subsubsection. The subsubsectenv macro
defines the environment in which the title is printed. The standard style definitions should be
consulted for details.

46 Standard macros

16.25 Table and endtable

.table "< title>" [rm]
 <text>
 .endtable

Tables are essentially like figures, except that a separate sequence of numbers is maintained, and
their title lines start with the word ‘table’ instead of the word ‘figure’.

The title is printed below the table, and it is automatically numbered. The number of the next title
is held in the variable tablenumber. If this value is set negative, table numbering is suppressed. If
the variable tabletitle is set to the value ‘false’, then table titles are not printed.

16.26 Useaccents and usegreek

.useaccents
 .usegreek

These macros request the inclusion of sets of standard flags for accented characters, and for the
Greek character set. Accented characters are requested by flags of the form $aacute , etc. for
lower case, and $Aacute , etc. for upper case. Greek letters are requested by flags of the form
$alpha , etc. for lower case, and $Alpha , etc. for upper case.

16.27 Usespecials

.usespecials

This macro requests the inclusion of flag definitions for all the special characters in the standard
encoding for PostScript fonts, using the PostScript character names preceded by a dollar. For
example, the upside-down exclamation mark is given the name $exclamdown. If this macro is
called when generating plain output, all the flags cause a question mark to be printed.

Standard macros 47

 17. PostScript-only macros

The following macros are available only in the PostScript-generating styles:

17.1 Landscape

.landscape

This macro requests that the current and subsequent pages of output be in landscape orientation. It
does not of itself cause any change in the settings of the line length or page depth– it just arranges
for the output pages to be ‘turned round’. It is usually necessary, therefore, to make adjustments to
the line length and page depth after calling landscape.

17.2 Picture, endpicture, and psinclude

.picture < space> [< x>] [< y>] [< mag>]
 <PostScript description of picture>
 .endpicture

This macro is used for including PostScript generated by other systems into an SGCAL document.
The first argument is an expression specifying the total vertical amount of space required for the
‘picture’. The second and third arguments are dimensions which specify the offset of the origin
from the bottom lefthand corner of this space, and the final argument is the magnification. The last
three arguments default to 0 0 1, and must be specified as single numbers; they may not be
expressions.

The PostScript itself can be included in one of two ways. The longcontrol SGCAL directive
(section 21.40) can be used to include lines of PostScript directly. Alternatively, the macro

.psinclude < file name>

can be used to generate a suitable directive for including the given file of PostScript. Pictures are
normally inserted inside displays or figures.

17.3 Portrait

.portrait

This macro can be used to reset the output orientation to portrait, following the use of landscape. It
applies to the current and any subsequent pages. It is usually necessary to make adjustments to the
line length and page depth after calling portrait.

17.4 Transformfont

.transformfont < font> < slope> < vstretch>

This macro requests the application of a transformation matrix to the given font. It can be used to
set up sloped or vertically stretched fonts. The transformation matrix that is applied to the font is,
in PostScript notation,

[1 0 < slope> < vstretch> 0 0]

The arguments must be specified as single numbers; they may not be expressions. For example, to
stretch font number 53 vertically by 25% while at the same time sloping it to the right by 15%, the
directive

.transformfont 53 0.15 1.25

could be used. See section 21.3 for details of how to set up additional fonts.

48 PostScript-only macros

 18. Standard flag strings

The following basic flag strings are defined by the standard styles. Each string is followed by the
name that is used for defining the flag. For details of what each flag does, see chapter 20 (Basic
flags).

$a abstab ~~ insert
 $B back +++ join
 $bc bezier $L level
 $caps caps $M mark
 $c centretab $N nextfnumber
 $C centreheretab $nh nohyphen
 $= character $> nosplitspace
 $rgb colour $pop pop
 $D down $push push
 $nocaps endcaps @ quote
 $E endheretab rl right-to-left
 $e endtab $sf shapefill
 $pu endunderline $s space
 ~ dhyphen $S splitspace
 $f font $sr srule
 $g fontgroup $su startunderline
 $ff forcefont $<> stretchspace
 $fh forcehyphen $t tab
 $F forward $< thinspace
 $hr hrule $U up
 - hyphen $vr vrule
 $i indenttab

The following compound flag strings are defined by the standard styles:

$$ is defined as ""
 $fh{ is defined as "$push$fh"
 $nh{ is defined as "$push$nh"
 $rl{ is defined as "$push$rl"
 } is defined as "$pop"
 # is defined as "$s"
 $npbracket is defined as "(" ")"
 _ is defined as "$su" "$pu"

The closing curly bracket is a general terminator for changes of font and other changes to the local
environment. The font-changing (and some other) flags cause the local environment to be pushed
onto the stack, and this flag causes the previous values to be restored. The font changing flags are
defined below, and details of the local environment can be found in chapter 12.

Note that a number of macros in the standard styles also cause restoration of the previous state of
the local environment– for example, the start of a new section, or of a new numbered paragraph.
Therefore it is best to keep font changes that are expressed using the standard flags entirely within
such larger text items.

The flag consisting of two successive dollars is defined to have no effect. Its use is for terminating
other flags that might otherwise be misinterpreted. For example, if an occurrence of the centring tab
($c) is immediately followed by the letters ‘aps’, it would be misinterpreted as an occurrence of
the caps flag unless followed by two dollar signs.

The flag consisting of a single sharp sign (#) expands into a call to the space flag with no
dimension following it. This causes an amount of space equal to the ‘exact space’ of the current
font to be inserted into the line.

Standard flag strings 49

The flag consisting of an underscore character alternately switches underlining on and off, while the
use of the flag called $npbracket is described in chapter 16.

The following compound, device-specific flags are defined by the standard styles in order to access
frequently used special characters:

--- em-dash
 -- en-dash
 ‘‘ double opening quote
 ’’ double closing quote
 --> right arrow
 <-- left arrow
 <-> double arrow
 ($) pound sterling
 ($E) Euro
 (c) copyright sign
 (TM) trademark sign
 $’ minutes sign
 $. ‘bullet’

The following font-changing flags are defined by the standard styles. The actual definitions of each
flag are dependent on the output device; however, each always begins by pushing the current
environment onto the stack before changing typeface. The terminating flag is therefore always ‘} ’.

$rm{ roman
 $it{ italic
 $sl{ slanted
 $bf{ bold
 $bi{ bold italic
 $tt{ typewriter
 $ss{ sanserif
 $sc{ small caps
 $sp{ special chars font
 $erm{ enlarged roman
 $crm{ compressed roman

The small caps flag simply changes font; it does not of itself force subsequent input into capital
letters. All except the last two of these flags work within the current fontgroup; that is, the size of
the font is taken from the group. See section 21.20 for details of font groups. The last two flags
select the fonts by absolute number.

The styles in which headings appear (large type, bold face, etc.) are controlled by flags which are
placed before each heading text. They are:

$chead{ chapter heading
 $shead{ section heading
 $sshead{ subsection heading
 $ssshead{ sub-subsection heading
 $fkt{ footnote key in text
 $fkn{ footnote key for note
 $ftitle{ figure title
 $ttitle{ table title

The heading texts are always terminated by a closing curly bracket. Before re-defining one of these
flags, it is first necessary to cancel it using the cancelflag directive. Thus, for example, to arrange
for section headings to be in sanserif type:

.cancelflag $shead{
 .flag $shead{ "$ss{"

The variable hnspace contains a string to be inserted between the number of a chapter, section or
subsection and its title. By default this string is a single space, but it can be changed as required.

50 Standard flag strings

 19. Standard variables

The standard styles make use of a number of variables, both as parameters for varying what they
do, and also for internal working. Those that control the typeface and type spacing have been
described above. Others that are of most interest to the user are:

chapname name of the current chapter
 chapstart ‘true’ while processing .chapter
 chapter number of the current chapter
 contents set ‘true’ to generate contents information
 displayindent amount by which to indent displays; default 0
 figurenumber number of the next figure
 figuretitle if false, no figure titles
 footnote number of the previous footnote
 hndot dot to print after chapter number
 hnspace space after chapter/section titles
 npindent amount to indent numbered paragraphs
 perpagenotenumbers set ‘true’ for per-page footnote numbers
 rchapter set ‘true’ to start chapters on right-hand pages
 section number of the current section
 sectname name of the current section
 sectstart ‘true’ while processing .section
 ssectname name of the current subsection
 ssectstart ‘true’ while processing .subsection
 sssectname name of the current sub-subsection
 sssectstart ‘true’ while processing .subsubsection
 style the name of the current style
 subsection number of the current subsection
 subsubsection number of the current sub-subsection
 tablenumber number of the next table
 tabletitle if false, no table titles

The numbering of chapters, sections, subsections, sub-subsections, figures, and tables can be
suppressed by setting the variable holding the current number to a negative value. For example,

.set chapter -1

causes subsequent chapters not to be numbered. The numbering of footnotes normally continues
throughout a chapter (or the whole document if endnotes is used). However, if

.set perpagenotenumbers true

is used, the numbers are reset for each page. This facility is available only for fancy output, and it
assumes that there are no more than nine footnotes on each page.

Figure and table numbers refer to the next such item, so that it is easy to include references such as

in figure ~~figurenumber below

immediately before the definition of a figure.

The variables holding the names of chapters, sections, etc. can be used to generate running heads
and feet, and the variablechapstart can be used to suppress or change a running head at the start
of a chapter. Similarly, sectstart etc. can be used to do this if a section coincides with the top of a
page.

The variablehndot is initialized to contain a single full stop. Its contents are printed after the
chapter number at the start of a chapter.

The variablehnspace is initialized to contain a single space. Its contents are printed between
chapter and section numbers and their titles. In the case of chapters, it follows hndot.

Standard variables 51

If the variable contents is set to ‘true’ (the default is ‘false’) then information about chapters and
sections etc. is automatically output to the index file, for processing into a table of contents. The
contents entries can be distinguished from other entries in the index file by the fact that each such
entry contains ‘$e ’ immediately before the page number.

The style variable can be used as follows to supply a default style if one is not given on the
SGCAL command line:

.if !set style
 .library "< default style>"
 .fi

This variable is also used internally to prevent more than one style being set at once.

52 Standard variables

 20. Basic flags

Basic flags are those whose actions are built in to SGCAL. In this chapter, details of the action for
each such flag are given. The character sequence for each flag that is used in the standard styles is
given in parentheses for each flag, preceded by the name used to define the flag when it is not the
same as the descriptive name.

Flags are defined by theflag directive (see section 21.18). The standard styles contain definitions of
a standard set of flag strings (see chapter 18). These are listed for each flag, and are used in the
examples in this chapter.

A number of flags are followed by arguments, which are frequently dimensions (for example, the
width of space to insert). SGCAL does not recognize expressions in text lines (which is where
these flags are processed), but because it scans lines for variable insertions before it scansfor other
flags, it is possible to compute values for these arguments. For example, to draw a vertical rule that
has a length of 10 times the current line depth, the following could be used:

.set rlength 10*~~sys.linedepth
 $vr~~rlength

This facility can be used for any type of argument. It can even be used to insert the flag strings
themselves.

20.1 Absolute tab (abstab, $a)
This flag must be followed by a dimension in points specifying an absolute horizontal position on
the output line for the start of subsequent text, for example:

$a46this is 46 points from the left

If the flag is followed by an asterisk, then the number which follows is interpreted as a number of
ems in the current font, for example

$a*20this is 20 ems from the left

If the requested position is to the left of the current position, a new line is started, unless this flag is
encountered at the start of an indented line, in which case a leftwards movement is generated.
Space characters in the input immediately before and immediately after this flag and its argument
are ignored.

20.2 Back ($B)
This flag is used in conjunction with the mark flag; see section 20.26.

20.3 Draw Bezier curve (bezier, $bc)
This flag must be followed by six dimensions, separated by commas. Negative values are permitted.
The dimensions are interpreted as points, unless preceded by an asterisk. For horizontal dimensions,
an asterisk specifies a dimension in ems; for vertical dimensions an asterisk specifies a dimension
in units of the current font size.

The dimensions are interpreted as three pairs of horizontal and vertical coordinates, relative to the
current point on the output line. A Bezier curve is drawn from the current point to the position
specified by the third pair, using the first and second pairs as the coordinates of the control points.
For example, using the standard flag:

$bc10,10,40,10,50,0

The current position on the line is moved to the end of the curve. The width of line is controlled
by the rulewidth directive, and the colour by graphcolour or graphgrey (or their synonyms
rulecolour and rulegrey). This flag is intended mainly for use by programs generating line art as
SGCAL input.

Basic flags 53

20.4 Force capitals (caps, $caps)
The caps flag switches on the environment option to force all subsequent text letters to upper case.

20.5 Do not force capitals (endcaps, $nocaps)
The endcaps flag switches off the environment option to force all subsequent text letters to upper
case.

20.6 Centre tab (centretab, $c)
This flag causes text between it and the next tab flag (of any kind) or the end of the input line in
which it occurs (whichever comes first) to be centred between the indent and the line length. For
example:

$c this text is centred

If centring on the current line would require the insertion of a negative amount of space, because of
previous text on the line, a new output line is automatically started. Space characters in the input
immediately before and immediately after this flag are ignored.

20.7 Local centre tab (centreheretab, $C)
This flag causes text between it and the next tab flag (of any kind) or the end of the input line in
which it occurs (whichever comes first) to be centred at the current point on the output line. Its
effect is the same as inserting the appropriate amount of negative space at the current point, and it
does not check for overprinting. It is typically preceded by another sort of tab or a sequence of
spaces. Space characters in the input immediately before and immediately after this flag are
ignored.

20.8 Character ($=)
The character flag is used to specify a text character by means of itsASCII code in decimal. For
example,

$=185

specifies character number 185 in the current font. A character specified with the character flag is
always treated as a text character; in particular

$=32

causes character 32 in the current font to be printed – it is not treated as a space character.

20.9 Colour ($rgb)
This flag changes the colour of subsequent text. It does not affect the colour of graphics (see
graphcolour). The flag must be followed by three real numbers in the range 0.0–1.0, separated by
commas. They specify the red, green, and blue components of the colour, respectively. For
example,

$rgb0,0,0.9This text is almost full-strength blue.

If a digit follows, the null flag ($$) must be used to terminate the final number. To obtain grey text,
use three identical numbers. Three zeroes gives black; three ones gives white. The current colour is
kept in the environment, and so can be saved and restored.

20.10 Discretionary hyphen (dhyphen, ~)
This flag marks positions in words where a hyphen may be inserted if necessary. If no hyphen is
required, nothing is printed. If a word contains one or more discretionary hyphens it is only ever
hyphenated at those places; the automatic hyphenation rules are not used. See also the hyphen flag
and chapter 23.

54 Basic flags

20.11 Down ($D)
The down flag is used to move the current printing point down within a line, typically for
subscripts. It can be followed by an absolute number of points, or an asterisk and a factor which is
multiplied by the current font size. If the following character is neither an asterisk nor a digit, the
movement is one-third of the current font size. Thus,

$D1.5 moves down by 1.5 points
 $D*0.6 moves down by 0.6 times the current font size
 $D moves down by one-third of the current font size

The down flag operates only within the current output line. It does not affect the vertical position of
characters on subsequent lines.

20.12 End-of-line tab (endtab, $e)
This flag causes the text that follows it, up to the next tab flag (of any kind) or the end of the input
line in which it appears (whichever comes first) to be output at the end of an output line. If
necessary, because of the length of the text, a new output line is started for this purpose. The end-
of-line tab is often used in conjunction with the centring tab. For example:

left text $c centre text $e right text

Space characters in the input immediately before and immediately after this flag are ignored.

20.13 Local right-aligning tab (endheretab, $E)
This flag causes the text that follows it, up to the next tab flag (of any kind) or the end of the input
line in which it appears (whichever comes first) to be output such that it ends at the current point.
Its effect is the same as inserting the appropriate amount of negative space at the current point, and
it does not check for overprinting. It is typically preceded by another sort of tab or a sequence of
spaces. Space characters in the input immediately before and immediately after this flag are
ignored.

20.14 End underlining (endunderline, $pu)
This flag turns off the underlining switch in the current environment, thereby causing subsequent
text not to be underlined.

20.15 Change font (font, $f)
The font flag must be followed by a font number in the range 0 to 99. It selects a font from the
current font group. If the current font group is group zero, then the font which is selected is the one
with the given absolute font number. Otherwise the definition of the font group is consulted and the
given number is used as an index into the list of fonts which make up the group.

20.16 Change font group (fontgroup, $g)
This flag must be followed by the number of a defined font group, and it makes that group the
current font group. It does not cause a change of font. See section 21.20 for further details of font
groups.

20.17 Force output of font (forcefont, $ff)
When SGCAL is outputting in fancy mode (i.e. outputting GCODE) it normally writes a font
change command only when it is about to output characters in the new font, thereby avoiding
redundant font changes. This means that font changes almost always follow spacing commands in
GCODE. For example, an input line of the form

aaa $it{bbb ccc} ddd

generates as output

Basic flags 55

 aaa< space><change font>bbb< space>ccc< space><change font>ddd

although the size of the third space is that of the original font. In most cases the order of spacing
and font-changing commands in the GCODE is immaterial, but there are some special applications
where it does matter. To cater for these cases, a flag which causes a pending font change to be
output is provided. The standard styles define the string $ff for this flag; an input line of the form

aaa $it{bbb ccc}$ff ddd

generates as output

aaa< space><change font>bbb< space>ccc< change font><space>ddd

If this facility is frequently required, users can define shorter flags of their own, or even re-define
the closing curly bracket to include it.

20.18 Force hyphenation (forcehyphen, $fh)

SGCAL does not by default automatically hyphenate the last word of a paragraph, nor any word
which contains capital letters. This flag can be used to request it to do so. The standard styles
define the string $fh to set this option, and also the string$fh{ to ‘push’ the environment and
then set the option, so that } can be used to return to the status quo, as in this example:

this is the end of a $fh{paragraph}.

Details of hyphenation are given in chapter 23.

20.19 Forward ($F)

This flag is used in conjunction with the mark flag; see section 20.26.

20.20 Horizontal rule (hrule, $hr)

This flag must be followed by a dimension which specifies the length of horizontal rule to be
drawn. The dimension is interpreted as a number of points, unless preceded by an asterisk, in which
case it specifies a number of ems in the current font. The rule is drawn at the current base line
level, and the current point is moved to the end of the rule. The dimension may be negative, which
causes the rule to be drawn to the left. Double negatives are permitted, so a construction such as

$hr-~~somevar

where the variable somevar contains a negative number, work as expected.

For example, to draw a horizontal rule of length 1.5 inches at the current point,

$hr108

is used. The thickness and colour of the line are specified by the rulewidth and graphcolour or
graphgrey directives.

If there is no dimension following the flag, no rule is drawn unless there is a line position mark in
effect, in which case the rule is drawn to the current ‘high water mark’ of the line (i.e. the
rightmost point ever reached). See section 20.26 for details of position marking.

20.21 Hyphen (-)

This flag marks positions in words where a hyphen is always inserted, and where the line may be
split if necessary. It is recognized only if preceded and followed by a letter. In the standard styles, a
single hyphen character is used for this flag.

If a word contains one or more hyphens it is only ever hyphenated at those places; the automatic
hyphenation rules are not used. See also the discretionary hyphen flag (section 20.10).

56 Basic flags

20.22 Indent tab (indenttab, $i)
This flag causes the current point in the output line to be moved to the current indent. It is useful in
conjunction with thetempindent directive for outputting material in the indent space. For example:

.indent 5em
 .tempindent 0
 XX $i This is indented 5 ems, with XX in the margin.

If necessary, that is, if the current point is already past the indent width, a new line is started. Space
characters in the input immediately before and immediately after this flag are ignored.

20.23 Variable insertion (insert, ~~)
The insert flag is used for the insertion of variables and macro arguments in both text and directive
lines.

20.24 Line joining (join, +++)
The line joining flag is recognized only at the ends of lines which are read from an input file. It
causes the subsequent line to be joined on to the one in which it appears, to make a single long
input line.

20.25 Level ($L)
The level flag causes the current point to be moved back to the base level of the line. It is typically
used after the up, down, or vertical rule flags.

20.26 Position marking (mark, $M)
This flag is used in conjunction with the forward and back flags to achieve overprinting effects in
lines. The mark flag causes the current horizontal position to be saved on a stack; the back flag
causes an amount of (usually negative) space to be inserted into the line so that the current point
returns to the marked horizontal position; the forward flag causes an amount of non-negative space
to be inserted into the line to take the current point to the rightmost position reached since the last
mark.

For example, using the standard definitions for these flags, the words ‘over’ and ‘print’ can be
printed on top of each other by the following input:

$Mover$Bprint$F

It is important to include the final forward flag, even if it is clear that it will not result in any space
being inserted, because between the mark and forward flags, all spaces are marked as non-splitting
spaces.

All three flags should always appear in the same logical input line. The back flag may be used any
number of times between a mark and its corresponding forward flag. Also, uses of these three flags
may be nested for more complicated effects. The horizontal rule flag (section 20.20) behaves
differently if it appears without a dimension between a mark and a forward flag.

20.27 Per-page footnote numbers (nextfnumber, $N)
For fancy output, SGCAL is capable of automatically generating footnote numbers that reset for
each page, provided there are no more than nine footnotes on a page. At the point where you want
to reference the next number in the text, and also at the point where the number appears in the
footnote, this flag is used. Normally this is handled automatically by a macro for footnotes.

20.28 Disabling hyphenation (nohyphen, $nh)
This flag unsets the switch in the local environment that allows SGCAL to attempt to hyphenate
words automatically. There is no flag for resetting the switch; this is normally done by restoring the
previous environment or by using the enable directive (section 21.15). The standard styles define

Basic flags 57

$nh as the basic flag string, and $nh{ as a flag which ‘pushes’ the local environment and then
unsets the switch. The previous state can then be restored by means of the } flag, as in this
example:

don’t hyphenate $nh{hyphenation}

The word ‘hyphenation’ in this example will not be hyphenated. Details of hyphenation are given
in chapter 23.

20.29 Non-splitting space (nosplitspace, $>)
This flag inserts a space into the current line which has the width of a normal space, and is
stretchable, but which will not be recognized as a place at which the line may be split.

20.30 Environment restore (pop, $pop)
The pop flag causes the local environment to be restored from the top entry on the environment
stack, provided that it is an ‘anonymous’ entry. For further details of the environment stack, see the
description of the pop directive in section 21.56.

20.31 Save environment (push, $push)
The push flag causes the local environment to be saved on the environment stack. The entry is
marked ‘anonymous’. For further details of the environment stack, see the description of the push
directive in section 21.56.

20.32 Output right-to-left (righttoleft, $rl)
This flag sets a switch in the environment that causes subsequent input to be reversed, and output
in right-to-left order. The standard styles define$rl as the basic flag string, and$rl{ as a flag
that ‘pushes’ the local environment and then sets the switch. The previous state can be restored by
means of the } flag, as in this example:

The next word is $rl{backwards}.

The output is ‘The next word is sdrawkcab.’

There is a system variable called sys.righttoleft, which is ‘true’ if the right-to-left state is currently
set in the environment.

The right-to-left state has an effect only when a line is about to be output. All processing prior to
that is unaffected. The text between the setting of right-to-left and its unsetting, or the end of the
line, or any tab, is output by reversing the order of the words, and within each word, reversing the
order of the letters. Thus,

The quick brown fox jumps $rl{backwards over} the lazy dog.

comes out as

The quick brown fox jumps revo sdrawkcab the lazy dog.

Any kerning or ligatures that are set for the font take effect on the reversed text. For example, the
output from $rl{if} in a roman font is the ‘fi’ ligature.

You need to take care when using right-to-left output. In particular, the following should be noted:

• Take care with underlining. It does work if it is turned on and off wholly within a backwards
 section, or if a backwards section is contained within an underlined section, but if it is not
 nested like this, there may be problems.

• Each tabbed field is independently reversed, and tabs still work from left to right.

• The justification setting is not changed automatically.

• Automatic hyphenation does not work. It is probably best to turn off automatic hyphenation.

58 Basic flags

20.33 Character quoting (quote, @)
The quote flag is a means of entering characters as text that would otherwise be interpreted as flags.
The standard styles define the@ character as the quote flag. For example, if a closing curly bracket
is wanted in the text, it must be entered as @}. If a space character is preceded by the quote flag, it
is treated as character 32 in the current font, and is not treated as a word separator.

To enter an @ character itself as text, @@ must be typed. When using a standard style, it is good
practice always to use@ in front of any occurrences of the characters #, $, and _ in the text, even
though not all occurrences of $ will be recognized as the start of a flag.

20.34 Space insertion (space, $s, see also #)
The space flag is used to insert given amounts of space into a text line. Such space is neither
stretchable nor recognized as a point at which the line can be split, and is sometimes called ‘hard
space’. If the flag is followed by a digit or a minus sign, then what follows must be a dimension
specifying a positive or negative amount of space, in points. The dimension may include a decimal
point and a fractional part. A negative amount of space moves the current point to the left. It is
possible to move it beyond the left-hand margin by this means.

The space flag may alternatively be followed by an equals sign and another character, in which
case the amount of space inserted is equal to the width of the given character in the current font. To
insert a negative amount of space equal to the width of a given character, the space flag is followed
by a minus sign, an equals sign, and then the character.

If the space flag is followed by an asterisk, this must be followed by a number, optionally preceded
by a minus sign and containing a fractional part, and it signifies a multiple of the exact space width
of the current font.

If the flag is followed by none of these alternatives, then the width used is precisely the exact space
width for the font.

The standard styles define the string ‘$s ’ as the space flag. Using this definition, the following
examples show each of the possible kinds of space that may be inserted:

$s the exact space width
 $s=x the width of the character ‘x’
 $s-=x minus the width of the character ‘x’
 $s1.2 1.2 points
 $s-3.6 -3.6 points
 $s*0.6 0.6 times the exact space width
 $s*-1.3 -1.3 times the exact space width

The standard styles also define the flag ‘#’ to expand to ‘$s ’, which always gives an exact space
even if it is followed by a digit, since searches for flag arguments do not go beyond the end of
previous flag expansion strings.

20.35 Splittable non-stretchable space (splitspace, $S)
This flag operates exactly as the space flag, except that a line may be split at the point where it
appears.

20.36 Extra-stretchy space (stretchspace, $<>)
This flag inserts a space into the current line which has the width of a normal space, and is
stretchable, but which will not be recognized as a place at which the line may be split. It differs
from the non-splitting space in the following way: if a line which is being stretched for justification
contains any extra-stretchy spaces, then all the additional space is distributed between these spaces,
the other stretchable spaces being left at their initial widths. In addition, if the final line of a
paragraph contains at least one extra-stretchy space it is always fully justified, provided the
appropriate justification option is set.

Basic flags 59

20.37 Filled shapes (shapefill, $sf)
A sequence of drawing instructions that is enclosed between two instances of this flag causes a
filled shape to be drawn. No outlines are drawn; if an outlined shape is required, the outline must
be separately specified. The colour of the shape is the current graphic colour (set by the
graphcolour directive). It is not expected that this flag be used directly; it is provided as a facility
that Aspic can use in the output it returns to SGCAL.

20.38 Sloping rule (srule, $sr)
This flag must be followed by two dimensions, separated by a comma, which specify the horizontal
and vertical offsets of the rule to be drawn. Each dimension is interpreted as a number of points,
unless preceded by asterisk, which causes the horizontal dimension to be taken as a number of ems,
and the vertical one to be taken as multiplying the current font size.

The rule is drawn starting at the current base line level, at the current horizontal position, and the
current point is moved to the end of the rule afterwards. The dimensions may be negative, which
cause the rule to be drawn to the left (for the horizontal dimension), or downwards (for the vertical
dimension). The thickness and colour of the line can be specified by the rulewidth and
graphcolour or graphgrey directives.

20.39 Start underlining (startunderline, $su)
This flag causes the underlining switch in the current environment to be set. Subsequent text will be
output underlined.

20.40 Tab ($t)
This flag causes the current point in the output line to be moved on to the next defined tab stop. It
may also cause centre or end-aligning of the tab field; for details see the tabset directive in section
21.70. If there are no further tab stops to the right of the current position in the output line, an error
is generated and the flag is ignored. Space characters in the input immediately before and immedi-
ately after this flag are ignored.

20.41 Thin space (thinspace, $<)
This flag inserts a small amount of non-splittable, non-stretchable space into the current line. The
width is determined by the current font.

20.42 Up ($U)
This flag is the complement of the down flag, and causes the current point to be moved upwards
within the current line.

20.43 Vertical rule (vrule, $vr)
This flag causes a vertical rule to be drawn at the current point. It must be followed by a dimension
in points, which may be negative. Positive rules are drawn upwards. If the dimension is preceded
by an asterisk, it is multiplied by the size of the current font.

The current point is moved vertically to the end of the rule. There is no horizontal motion. The
level flag can be used to restore the current point to the base line. The thickness and colour of the
line can be specified by the rulewidth and graphcolour or graphgrey directives.

60 Basic flags

 21. Basic directives

This chapter contains descriptions of all the basic directives that are built into the SGCAL program.
Most of those whose arguments are numeric allow expressions to be used as well as single
numbers; exceptions are the directives dealing with fonts. The phrase ‘dimension expression’ is
used to mean an expression which has a numeric value that is interpreted as a dimension, while
‘integer expression’ is used for an expression which evaluates to an integer value.

21.1 Aside
This directive causes all input lines that follow it, up to a line containing the directive enda, to be
processed for inserts only, and then written to the file defined by the -aside keyword on the
SGCAL command line. While searching for enda, any macros that are encountered are expanded.
To avoid this expansion, the directive flag on such lines can be preceded by the quote flag.

21.2 Backspace

This directive specifies how the action of backspacing, for the purpose of overprinting characters, is
to be represented in plain output. It must be followed by one of the following words:

• backspace: overprinted characters are output as ‘character, backspace’, with underlined
 characters characters as ‘_, backspace, character ’.

• cr: a carriage return is used to separate two overprinting lines, with the overprinting characters
 (including underlines) on the first of them so that if the file is displayed on a screen, the
 overprints get wiped out.

• crlf: overprinted characters are output on a second line underneath the main line. Underlined
 characters have ‘- ’ (a hyphen) printed below them.

• none: overprinted characters are not output at all.

The default setting in the SGCAL program is

.backspace backspace

However, the online style sets the option to

.backspace crlf

The backspace directive has no effect when SGCAL is generating fancy output.

21.3 Bindfont
This directive is used to specify which fonts are to be used by SGCAL, and its syntax is

.bindfont < n1> [< n2>]* "< font name>" < size1> [< size2>]*

where <n1>, <n2>, etc. are font numbers, in the range 0–99, and <size1>, <size2>, etc. are the
corresponding sizes required, in points (with permitted fractional part).

The name of the font is in two parts, separated by a slash. The first names the font family, and the
second the actual font itself. For PostScript output, the font family name is ‘atl’ (Adobe Type
Library). The same font name may be used in several bindfont directives, but it is more efficient to
specify all the fonts that require it together, as the font metric file is then read only once. For
example,

.bindfont 0 5 8 "atl/Times-Roman" 10 14.5 17

The appearance of a bindfont directive in an SGCAL input file indicates that the output is to be
GCODE. If no bindfont directives appear, output is as plain text.

Basic directives 61

The standard styles (apart from ‘printer’) bind appropriate sets of fonts, but the user is free to bind
additional ones if required. It is suggested that user font numbers start at 51 and work upwards, to
avoid clashes with the numbers used by the standard styles.

All bindfont directives must appear at the start of the input, preceding any text lines.

See the descriptions offont and fontgroup (sections 21.19 and 21.20) for further information on
the use of fonts.

21.4 Call
This directive must be followed by the name of a command in the underlying operating system,
possibly followed by one or more options settings. No quotes are used. For example:

.call aspic -sgcal -nv

This directive causes the lines that follow it, up to a line containing the directive endcall, to be
read, processed for inserts, and written to a temporary file. While searching for endcall, any macro
directives that are encountered are expanded. To avoid this expansion, the directive flag on such
lines can be preceded by the quote flag.

The named command is then called with two additional arguments: the name of the file containing
the copied lines, and the name of a second temporary file into which the result of processing the
lines is to be written.

When the command returns, the output file is read and processed as SGCAL input. This facility
enables parts of SGCAL input files to be processed by specialised pre-processors before being
typeset. In particular, this is the mechanism by which the Aspic line-art program is called.

21.5 Cancelflag
This directive must be followed by a defined flag string. It causes it to become undefined. For
example:

.cancelflag $rm{

This is necessary if a flag string is to be re-defined.

21.6 Cancelmacro
This directive must be followed by the name of a defined macro. It causes it to become undefined.
If a macro is re-defined without an intervening use of cancelmacro, a warning message is output.

21.7 Colseparation
This directive must be followed by a dimension expression. It specifies the amount of horizontal
separation between multiple columns. The default value is 12 points.

21.8 Comment
The rest of the input line following the comment directive is written to the standard error stream.

21.9 Contiguous
This directive specifies the start of a block of text which must be printed contiguously, that is, all
on one page. The end of the block is indicated by the endc directive. SGCAL reads and processes
all the lines in the block, and computes its depth. It is then associated with the current output line
that is being processed.

When the time comes to allocate the current output line to a page, if the contiguous block also fits
on the page, it is output following the current line. Otherwise it is held over and printed at the top
of the next page. This may result in its appearing ‘out of line’ with the input.

62 Basic directives

There are three optional arguments that may be used with the contiguous directive. It may be
followed by a number, to indicate its ‘series’. When a contiguous block in a given series is
encountered, it is always held over to the next page if there is already a block in that series being
held over, even if it would fit on the current page. If no number is given, series 1 is used.

In the standard styles, tables and figures are implemented as contiguous blocks in different series.
Thus the tables and figures in a document will always appear in the order in which they occur in
the input, but if a table is being held over to the next page, it does not prevent a small figure from
being printed on the current page.

Contiguous can also be followed by the word ‘inline’. This ensures that the block is printed in
sequence with the text in which it is embedded, a new page being started if necessary. This feature
is used by the display macro in the standard styles.

Finally, contiguous can also be followed by the word ‘novstretch’. This disables the vertical
stretching of lines in the contiguous block, and means they will always be spaced by the current
linedepth. Without it, the lines may end up further apart as a result of vertical stretching.

It is normally preferable to use one of the standard macros (display, figure, or table) rather than
the contiguous built-in directive, since they provide additional features such as saving the environ-
ment and adding space at the top and bottom of the contiguous text.

21.10 Control
This directive must be followed by a string in quotes. It is output in the GCODE as ‘printer control
information’. When the ultimate destination is a PostScript printer, the string is taken as a line of
raw PostScript to be included in the output at the relevant point.

When control appears at the start of a document, it may be intended as part of the ‘setup’
informtion for the document, or it may be intended to appear at the head of the first page. In the
latter case, it should be preceded by .endsetup (see section 21.16).

The directive longcontrol (section 21.40) is more convenient than control when there are a number
of lines of control information to be output.

21.11 Cset
This directive behaves like theset directive (section 21.66), except that it takes an additional
argument expression, and the variable is set only if that expression evaluates to ‘true’. For example,

.cset a (~~b > 6) "string"

sets the variable ‘a’ to the value ‘string’ only if the contents of the variable ‘b’ are a string
representing a number greater than 6. One special use is in setting a variable if it is not already set:

.cset b (!set b) < some expression>

The action of cset can be entirely duplicated using if, but it is more compact.

21.12 Cspace
This directive is like the space directive (section 21.68), except that it outputs the space onlyif the
current position is not at the top of a page. (However, if the galley option is set, this top-of-page
test is not applied.) In addition, the dimension given specifies a minimum amount of space which is
required above the new current point. Thus cspace ensures, rather than outputs, a given amount of
space.

If the previous item to be added to the page was a negative (upwards) amount of space, then
cspace inserts no space.

Cspace can be used at the start of a contiguous block, in which case it causes space to be generated
only if the block is printed other than at the top of a page (except in galley mode).

Basic directives 63

21.13 Disable
This directive switches off a number of optional processing features. It must be followed by one of
the following words:

emphasis emphasizing output lines
 filling filling of output lines by joining input
 flags interpretation of non-directive flags
 formfeed use of formfeed characters in plain output
 galley galley-style output
 hyphenation automatic hyphenation
 kerns processing of kerns
 ligatures processing of ligatures
 paradjust retrospective paragraph adjustment
 splitfoottext splitting of foot texts
 vstretch vertical stretching of pages

With the exception of the line emphasis, galley, and split foot text options, all these options are on
by default. The state of the vertical stretching option is kept in the global environment; the rest are
in the local environment and can therefore be preserved by push and pop.

The flags option affects only text lines; the insert flag is always interpreted in directive lines.

The galley option changes the way SGCAL works in a number of places. Details are given in
section 10.14. It is intended mainly for use when preparing online documentation.

The hyphenation option can also be disabled by means of thenohyphen flag (section 20.28).
Details of hyphenation are given in chapter 23.

The paradjust option allows SGCAL to re-consider a paragraph after it has split it up into lines
according to how much text can fit on each line. If there is a very ‘loose’ line that is preceded by a
very ‘tight’ line, and the ‘tight’ line ends with one or more short words, SGCAL tries moving some
of the short words onto the next line to see if this gives a more balanced distribution of words and
spaces. It is unlikely that you will ever want to turn this feature off; the facility is provided mainly
for testing.

The option for splitting foot texts is normally controlled via thesplitfootnotes macro (see chap-
ter 16).

21.14 Emphasis
This directive must be followed by a list of horizontal positions in a line at which ‘emphasis bars’
are to be printed when emphasizing output lines is switched on. Typically one or more values
slightly greater than the line length are given, but negative values are permitted, to generate
emphasis bars to the left of the text. The standard styles set up suitable default positions.

21.15 Enable
This directive is the complement of disable and takes the same arguments.

21.16 Endsetup
This directive forces an end to the setup section of the SGCAL input, which otherwise terminates
only when a non-empty text line is encountered. It is useful for forcing control directives to be
treated as part of the first page instead of part of the setup.

21.17 Error
The rest of the input line is output to the standard error stream, preceded by the text ‘**Error’, and
SGCAL reflects the current input position, as it does for internal errors. The return code is set as
for an internal error.

64 Basic directives

21.18 Flag
This directive is used for defining the strings which are to be recognized as flags. It is followed by
the string to be defined (not in quotes) and then either the name of an in-built flag, or by one or
two strings in quotes which are to replace the flag whenever it is encountered. For example,

.flag ~~ insert
 .flag $push push
 .flag $it{ "$push$f2"
 .flag _ "$su" "$pu"

The in-built flag names are given in chapter 20 (Basic flags). Flags may be re-defined, but this
causes a warning message unless the cancelflag directive has been used first. Several different flag
strings may have the same interpretation.

When a flag is defined with a replacement string, then that string is itself scanned for flags when it
is inserted into a line. However, a flag instance cannot begin in such an inserted string and continue
in the main part of the line.

For example, with the definitions above, when a line containing $it{45} is scanned, the string
$it{ is replaced by $push$f2 . This is then re-scanned, and $push and $f are recognized as
flags. The latter must be followed by a font number; in this case the number is 2. The fact that
there is another digit (4) following in the input line does not cause the argument to become 24,
because scanning of flags and their arguments stops at the end of a replacement string.

When a flag is defined with two replacement strings, they are used alternately. Thus, using the final
example above, the first time an underscore is encountered, it is replaced by $su , the next time by
$pu , the third time by $su , and so on.

21.19 Font
This directive must be followed by a number. It causes a new font to be selected. If the current font
group is zero, the number is interpreted as an absolute font number; otherwise it is interpreted as in
index into the list of fonts in the current group.

21.20 Fontgroup
This directive defines a font group, or specifies a change of the current font group. If it is followed
by a single number, that must be the number of a defined font group, or zero, and it becomes the
current font group.

Otherwise it must be followed by at least two numbers, with an equals sign after the first, which is
the number of the font group being defined. The rest are a list of fonts in that group. The order is
important, as fonts are selected from groups by indexing into this defined list.

Here is an example of the use of font groups, taken from one of the standard styles:

.fontgroup 1 = 0 1 2 3
 .fontgroup 2 = 10 11 12 13
 .flag $rm{ "$push$f0"
 .flag $it{ "$push$f1"
 .flag $sl{ "$push$f2"
 .flag $bf{ "$push$f3"

The flag for italic text, for example, is defined so as to select font number one from the current
group. When group 1 is current, it is actually absolute font number 1 that is selected, but when
group 2 is current, it is font number 11. The standard PostScript styles make use of three font
groups:

1 used for normal text
 2 used for footnotes – smaller in size
 3 used for chapter headings – larger in size

The nine standard fonts are defined in each of these groups.

Basic directives 65

Note that font group zero is special and is always available. It does not need to be, and indeed,
cannot be, defined. Selecting a font when font group zero is current always selects by absolute font
number.

21.21 Foot
This directive is used for defining foot lines. The lines between it and the directive endfoot are
saved up and obeyed at the foot of each page. If the resulting text is too deep for the foot space,
lines at its beginning are removed; if it is not deep enough, blank space is inserted at its beginning.

The processing of foot lines is exactly the same as for normal text lines. They may be filled and
justified as required. See also footenv below.

21.22 Footdepth
This directive, which must be followed by a dimension expression, specifies the amount of space at
the bottom of each page which is set aside for the printing of foot lines.

21.23 Footenv
This directive causes a copy of the current environment to be made. This is reinstated as the current
environment whenever foot lines are to be processed. The foot lines may make changes to their
environment, but these are abandoned at the end of foot line processing.

21.24 Foottext
This directive is the basic one that is used in the footnote macro. It causes the lines between it and
the directive endtext to be saved up and (normally) printed at the bottom of the page on which the
current output line is printed. Users should usually use thefootnote macro, which handles things
like change of type size and automatic numbering, rather than calling foottext directly.

The savetexts directive can be used to cause footnotes to be saved up for printing later in the
document, for example, at the end of the chapter. When the galley option is on, footnotes are
automatically saved until the end of the document.

21.25 Format
This directive specifies the format in which a user variable is to be printed. It is followed by the
name of an existing variable (i.e. one that has previously been set), and one of the words

roman lower case Roman numerals
 ROMAN upper case Roman numerals
 alpha lower case letter ‘numerals’
 ALPHA upper case letter ‘numerals’
 arabic arabic numerals
 indirect specifies an indirect variable

The Roman and ‘alphabetic’ numerals apply only if the contents of the variable are a digit string in
a suitable format. For Roman numerals the string must represent a whole number in the range
1– 9999, while for ‘alphabetic’ numerals the string must represent a whole number in the range
1– 26.

If the contents of a variable are not suitable for insertion in the specified numerical format, they are
inserted as a text string without modification. For example, if the following directives have been
obeyed:

.set a 1991
 .set b 5
 .set c -43
 .format a ROMAN
 .format b alpha
 .format c roman

66 Basic directives

Then the effects of inserting the three variables would be:

~~a yields MCMXCI
 ~~b yields e
 ~~c yields -43

When an variable whose format is ‘indirect’ is inserted into a line, the contents of the variable are
taken as the name of a second variable, which is substituted for the original variable. It may have
any format, and may itself be an indirect variable. To guard against infinite loops, indirections may
be no more than 10 deep. If the variable named in an indirect variable does not exist, an error is
generated.

21.26 Graphcolour
This directive defines the colour of graphics items – lines, curves, and filled shapes. It has no effect
on text. It is followed by three real numbers that specify the red, green, and blue components of the
colour, respectively. Their values must be between 0 and 1. For example,

.graphcolour 1 0 0.5

sets a lot of red and a little blue. Note that the only way of changing the colour of graphics is by a
directive. There is no flag (as there is for text).

21.27 Graphgrey
This is a convenience directive sets a grey colour for graphics items. It takes a single real number
argument, with a value between 0 and 1, and is equivalent to graphcolour with three arguments of
the same value.

21.28 Head
This directive is used for defining head lines. The lines between it and the directiveendhead are
saved up and obeyed at the head of each page. If the resulting text is too deep for the head space,
lines at its end are removed; if it is too shallow, blanks space is inserted at its end.

The processing of head lines is exactly the same as for normal text lines. They may be filled and
justified as required. See also headenv below.

21.29 Headdepth
This directive, which must be followed by a dimension expression, specifies the amount of space at
the top of each page which is set aside for the printing of head lines.

21.30 Headenv
This directive causes a copy of the current environment to be made. This is reinstated as the current
environment whenever head lines are to be processed. The head lines may make changes to their
environment, but these are abandoned at the end of head line processing.

21.31 If
This is SGCAL’s conditional directive, which must be followed by an expression which evaluates
to a numerical value. A value of zero is taken as false; any other value is true.

If the value is true, the input lines between if and the next elif, else, or fi are obeyed, and thereafter
any lines up to fi are skipped.

If the value is false, lines up to else, elif, or fi are skipped. If the terminator is else, then lines
following it up to fi are obeyed; if it is elif then another condition must appear. This is tested as
before.

While skipping lines, nestedif directives are correctly handled, and macro directives are expanded,
except when a macro is already active (to allow recursive macros to be written). This allows a

Basic directives 67

conditional section to begin in one macro and finish in another. However, no flags are processed in
skipped lines.

As an example of the use of if, here are the first few lines of the source of this document:

.if !set style
 .set typeface "Palatino"
 .set typespacing 11
 .library "a5ps"
 .fi
 .
 .if ~~sys.fancy
 .flag \ "$bf{" "}"
 .else
 .flag \ "_" "_"
 .fi

If the style has not been set on the command line (which would have resulted in a value being
placed in the variable style) then the ‘a5ps’ style is chosen, with a particular typeface and line
spacing. Then the flag string consisting of a backslash character is defined; its definition depends on
whether the document is being processed for lineprinter (‘plain’) output, or for some other device
(’fancy’ output).

21.32 Include

This directive must be followed by a string in quotes. It is taken as the name of a file which is to
be included in the input at the point where include appears. See also library (section 21.37).

21.33 Indent

This directive must be followed by a positive or negative dimension expression. It alters the
indentation of the output. Indent does not of itself cause a line break in the output, and it is obeyed
synchronously with the input text, taking effect from the next output line.

When an indent is set, it is possible to cause a line to start to the left of the indent by specifying a
space with a negative width, or by using a tab whose position is less than the indent. The
tempindent directive (section 21.71) can also be used to cause a given number of lines to start to
the left of the current indent.

When positioned to the left of the current indent (by any of the above means), the indent tab flag
can be used to move the current point to the current indent position (see section 20.22).

21.34 Index

The remainder of the line is taken as text to be output to the file defined by the -index keyword on
the SGCAL command line. The text is remembered with the current output line, and when that line
is allocated to a page, the relevant page number is added to the index text before it is written. If no
index file is defined, a single warning message is output.

If an index directive appears before the first line of any text at the start of the file, the output to the
index file does not contain a page number. This is useful for generating index entries of the form
‘disc, see disk’.

21.35 Inserttexts

When footnotes (see foottext) are not being printed at the bottom of each page, but are being saved
up (see savetexts), this directive causes any that have been saved to be printed at the bottom of the
current page.

68 Basic directives

21.36 Justify
This directive controls the formatting of output lines, and must be followed by one of the words

left left justification (‘ragged right’)
 right right justification (‘ragged left’)
 both both left and right justification
 bothR both left and right justification
 centre centre justification – all lines are centred

The default setting is ‘both’. The difference between ‘both’ and ‘bothR’ is that, when the latter is
selected, short lines at the ends of paragraphs are right-justified instead of left-justified.

Justification is independent of line filling. If line filling is disabled when justification is set to ‘both’
or ‘bothR’, every input line will be stretched to form an output line.

In modes other than ‘both’ or ‘bothR’, no stretching is done, whether or not line filling is in force
(but see looseness below).

21.37 Library
This directive is similary to include, but it takes its argument (a string in quotes) as the name of a
member of the standard library. The translation of the library name to an actual file name depends
on the operating system under which SGCAL is running. The main use of library is for selecting a
standard style. For example,

.library "a4ps"

should appear at the start of a document that is to be formatted for A4 pages on a PostScript
device. (A style can also be selected by a keyword on the command line.)

21.38 Linedepth
This directive sets the current line depth to the value of its argument, which is a dimension
expression. It does not cause a line break. If it occurs in the middle of a paragraph, the entire
paragraph is formatted at the new depth. The program’s default is 12 points, but some standard
styles change this.

21.39 Linelength
This directive sets the current line length to the value of its argument, which is a dimension
expression. It does not cause a line break. If it occurs in the middle of a paragraph, the new length
is applied to the next complete output line which follows this directive. The program’s default
length is 390 points, but the standard styles may change this.

21.40 Longcontrol
This directive provides a shorthand for a succession of control directives (see section 21.10). Each
line between it and endlc is treated as though it were enclosed in quotes and preceded by control,
unless the line starts with a macro directive, in which case the macro is expanded. To avoid this
expansion, the quote flag can be used.

Note that, as would be the case with a sequence of control directives, the insert flag is recognized
in the data lines, unless switched off by the disable directive.

21.41 Looseness
When a paragraph is formatted, the width of each stretchable space is multiplied by a looseness
factor before the paragraph is broken into lines. The default looseness factor is unity. This directive
is provided to alter the current looseness, which is kept in the local environment and so can be
preserved by push and pop. The argument is a numeric expression. Multiplication of space widths
by the looseness factor is independent of the justification mode.

Basic directives 69

Occasionally, a value slightly greater than one can cause a paragraph to take up one more line than
it otherwise would, which may help to improve the appearance of a page. Similarly, a value less
than one can be used to make a ‘tight’ paragraph. Values outside the range of around 0.8 to1.5 do
not generally result in acceptable paragraphs.

21.42 Macro

This directive is used to define macros. It must be followed by a macro name and a number of
prototypical arguments which are strings separated by spaces. If a string includes spaces, it must be
enclosed in double quotes.

The lines between the macro and endm directives are read and saved up. Each time the macro is
called these lines are obeyed as SGCAL input lines. Within the macro, the insert flag can be used
immediately preceding a sequence of digits to insert a macro argument. Argument numbers start
from one. As an example, here is the definition of the blank macro from the standard styles:

.macro blank 1 ""
 .newline
 .if "~~2" = "line" | "~~2" = "lines"
 .cspace ~~1 ld
 .else
 .cspace (~~1*~~typespacing/2) round ~~sys.vresolution
 .fi
 .endm

When a macro is called, its arguments are given in the same format as when it is defined, except
that the final argument need not be delimited by quotes, even if it does contain spaces. Macros can
be called recursively, and macros can be defined within macros. If a macro is re-defined, a warning
is issued.

Macros are expanded in input which is being skipped as a result of the if directive, and in portions
of the input which are being collected for separate processing as a result of the directives aside,
call, or longcontrol. However, in such circumstances, macros are never expanded recursively. That
is, if a macro is found to be already active, it is only expanded again if it is encountered as a
normal input line.

21.43 Multicolumn

When generating GCODE output, SGCAL is capable of producing more than one column on a
page. This directive specifies the number of columns required. Its argument is an integer
expression. When it is obeyed, it causes the current line length to be reset appropriately.

SGCAL cannot handle a change of number of columns in the middle of a page, except in the
special case of going from one column to more than one column. In other cases, a new page is
always forced.

When processing multiple columns, each column is treated as a ‘mini-page’ as far as the variables
which contain such things as space used and space left are concerned. Contiguous block processing
is also done on a per-column basis.

Users should normally use the columns macro instead of obeying this directive directly. Note that
it is not available for lineprinter output.

21.44 Newcolumn

This directive forces subsequent output to be at the top of a new column. If the current column is
the last one on the page, it has the same effect as newpage.

70 Basic directives

21.45 Newline
This directive forces a line break in the output. If it is followed by the word ‘justify’ then any
previous part line that it causes to be output is justified both left and right. This can be useful for
special effects, since the last line of a paragraph is not normally fully justified (even if ‘justify
both’ is set). It is not necessary to usenewline with the justify option when the previous line
contains one or more extra-stretchy spaces, since their presence automatically causes the line to be
justified.

21.46 Newpage
This directive forces subsequent output to be at the top of a new page. If called several times it
does not generate blank pages. (If this is required, space should be used to generate some blank
space on each page.)

When vertical stretching of pages is in force, pages are stretched only if they are fairly full. It is
possible to force a page to be stretched in all circumstances by following the newpage directive
with the word ‘vstretch’.

21.47 Newpar
This directive forces a line break in the output and then outputs an amount of vertical white space
defined by the parspace directive. Note that a blank line in the input is equivalent to newpar.

21.48 Nosep
This directive causes the next text line to be joined onto the current paragraph being built without
the insertion of any separating spaces. When line filling is enabled, it has the effect of suppressing
the insertion of a space between one line and the next. When filling is not enabled, it provides a
way of joining two input lines together.

Note that nosep affects the next text line processed. Intervening directive lines are not affected. It
may appear at the end of a macro to cause a text line that follows the macro to be joined onto a
text line within the macro. Its behaviour is thus different from that of the join flag.

21.49 Page
This directive sets the current page number, which is held in the system variable sys.pagenumber
and automatically incremented whenever SGCAL starts a new page. Its argument is an integer
expression.

21.50 Pagedepth
This directive sets the total depth of the output pages, including the space for head and foot lines.
Its argument is a dimension expression.

21.51 Pagerequest
This directive is similar to the request directive (see below), except that the request is repeatedly
obeyed at the top of each output page (including the current page).

21.52 Pagexoffset
This directive sets a horizontal offset for the placing of output pages on the paper. Its argument is a
dimension expression. It must appear at the head of the input, before any text lines are encountered.
By default, output normally starts one inch in from the left hand side of the page, so the horizontal
page offset is relative to this. It may be positive or negative. Multiple occurrences of pagexoffset
are cumulative.

If the pagexoffset directive is given with two arguments, they are taken as the horizontal offset
dimensions for verso (left-hand) and recto (right-hand) pages, respectively. This feature operates for

Basic directives 71

fancy output only; for plain output the second argument is ignored and all pages have the same
offset.

21.53 Pageyoffset
This directive sets a vertical offset for the placing of output pages on the paper. Its argument is a
dimension expression. It must appear at the head of the input, before any text lines are encountered.
By default, output normally starts one inch down from the top of the page, so the vertical page
offset is relative to this. It may be positive (to move further down) or negative (to move up).
Multiple occurrences of pageyoffset are cumulative.

21.54 Parindent
This directive sets the standard indentation to be used at the start of paragraphs. Its argument is a
dimension expression More specifically, wheneverendpar is obeyed, this value is set up automati-
cally as a tempindent (see section 21.71) for one line. The default paragraph indent is zero.

21.55 Parspace
This directive specifies the amount of vertical space to appear between paragraphs. Its argument is
a dimension expression. More specifically, this amount of space is output (conditionally) after an
endpar directive has resulted in the outputting of a non-null paragraph. The program’s default
value is 12 points, but the standard styles change this.

21.56 Pop
This directive is used to restore a previous set of local environment values from the environment
stack. There are three forms:

.pop
 .pop < letter>
 .pop *

The first reverts to the most recent set of values on the stack, provided that this is an anonymous
set. The second form reverts to the set of values preceding the most recent set that is identified by
the given letter. The final form reverts to the set of values at the bottom of the stack –that is, it
goes all the way back to ‘top level’. In the last two cases, a warning message is output if
intermediate frames are discarded.

21.57 Push
This directive pushes the current values of the local environment onto the environment stack. There
are two forms:

.push
 .push < letter>

If push is followed by a letter, the pushed set of values is identified by that letter; otherwise it is
anonymous. An identified set cannot be popped by a call to pop without the matching identifier,
whereas a call to pop with an identifier skips over intervening anonymous sets. This provides a
means of recovery from user errors in nesting pushes and pops.

21.58 Request
This directive must be followed by a string in quotes. It generates a request to the program which
is to process the GCODE produced by SGCAL. By convention, the string starts with a word
terminated by a colon which identifies which processing program is to take note of the request. At
present, only ‘PostScript:’ is relevant; this enables various options to be passed directly to the
sgtops program. The standard PostScript styles make use of this facility, but it should rarely be
needed by ordinary users.

72 Basic directives

See also the pagerequest directive, which specifies requests that happen at the top of each output
page.

21.59 Rset
This directive works like set in that it sets a value for a variable. However, if rset is used, SGCAL
assumes that the variable is a reference to some other place in the document, which might be a
forward reference. See section 9.2 for a discussion of forward reference handling. At the end of a
run, any variables that were set using rset are output to the file defined by the -rsetout command
line option. Once a variable has been set using rset it cannot subsequently be reset to a different
value.

21.60 Resolution
This directive specifies the resolution of the output device, in points. It is followed by two
dimension expressions giving the horizontal and vertical resolution respectively. The program’s
default is 6 points horizontally and 12 points vertically (suitable for plain output).

21.61 Rulecolour
This directive is a synonym forgraphcolour and is provided to match the rulegrey directive,
which has existed for a long time.

21.62 Ruledash
This directive sets parameters for the drawing of dashed lines. There are two forms. To specify that
subsequent rules and curves are to be drawn dashed, two non-zero dimension expressions must be
specified. The first gives the length of each dash, and the second the length of the gaps between
dashes. For example,

@.ruledash 4.5 5.1

To specify that subsequent rules and curves are to be drawn solid, a single dimension expression
whose value is zero must be specified.

21.63 Rulegrey
This directive is a synonym for graphgrey, which it predates. Originally it applied only rules, but
now it applies to all graphics.

21.64 Rulewidth
This directive specifies the thickness of subsequent rules as a dimension expression. The default is
0.4 points.

21.65 Savetexts
This directive, which has no arguments, specifies that foot texts (footnotes) are to be saved up
instead of being automatically printed at the bottom of each page. Instead, they are inserted when
the inserttexts directive is encountered.

21.66 Set
This directive sets the values of user variables. It must be followed by a variable name and an
expression. The expression is evaluated and the result is converted into the form of a string, which
is then stored in the variable. For example:

.set displayindent 2 em
 .set ps "PostScript"
 .set oldindent ~~sys.indent
 .set reference "~~chapter.~~section"

Basic directives 73

See also the cset directive in section 21.11.

21.67 Showhyphens

The remainder of the input line following theshowhyphens directive is a list of words separated
by spaces. Each is processed by SGCAL’s automatic hyphenation routine, and the result is output to
the verification file. This provides a means of checking whether SGCAL is capable of hyphenating
particular words. The sghytest command provides another way of doing this.

21.68 Space

This directive outputs vertical white space; the amount is specified by its argument, which may be a
positive or negative dimension expression. There is no default, and so a value must be given. If the
space causes the current point to go off the end of the page, no further space is output at the start
of the next page.

21.69 Stop

This directive causes SGCAL to stop processing without reading any further input.

21.70 Tabset

This directive is used for setting tab stops. It must be followed by a list of dimension expressions.
By default, these are relative to one another. For example,

.tabset 30 10 10 10

sets tab positions 30, 40, 50, and 60 points in from the left hand margin. Repeated identical values
can be specified by giving a repeat count and the letter ’x’. The above example could be
changed to

.tabset 30 3x10

If a value is followed by the letter ‘a’, it is taken as an absolute position instead of relative to the
previous stop.

The dimensions can also be followed by one of the letters ‘l’, ‘c’, or‘r ’, indicating a left-justified,
centred, or right-justified tab stop respectively. The absence of a letter is equivalent to ‘l’. For
example:

.tabset 10em 15em r 60.5

Tab flags in the input are processed when paragraphs are being split up into output lines. If a tab is
encountered and there are no further tab stops to the right of the current position in the output line,
an error message is generated and the tab flag is ignored.

21.71 Tempindent

This directive sets a temporary indent which lasts for a given number of lines (default 1). For
example,

.tempindent 24 3

sets a temporary indent of 24 points which lasts for the next three lines. The first argument is a
dimension expression, and the second an integer expression.

Tempindent does not cause a line break. If encountered in the middle of a paragraph, the new
indent applies to the next complete output line. Note that the endpar directive sets up new
temporary indent parameters, but these can be overridden by tempindent. Unlike the permanent
indent, the temporary indent value is not part of the local environment.

74 Basic directives

21.72 Templinelength
This directive sets up a temporary line length in similar way that tempindent sets up a temporary
indent.

21.73 Textcolour
This directive sets the colour of subsequent text. It must be followed by three real numbers in the
range 0 to 1, which specify the red, green, and blue components of the colour, respectively. The
numbers must be separated by spaces or commas. The text colour can also be changed by the
‘colour ’ flag.

21.74 Textgrey
This directive is followed by a single argument that sets a greylevel for subsequent text. It is a
convenience directive, and is a synonym for textcolour with three identical arguments.

21.75 Warning
The rest of the input line is output to the verification output, preceded by ‘**Warning’. SGCAL
then reflects the current input line as for an internal warning, and sets the return code appropriately.

Basic directives 75

 22. System variables

This chapter contains a list of all the available system variables. Those that contain numbers cause
strings without decimal points to be inserted when the fractional part is zero. Minus signs are used
for negative numbers; nothing precedes a non-negative number.

Certain system variables such as sys.usedonpage, sys.leftonpage, and sys.usedcontig, are updated
only when SGCAL is forced to start a new line by a directive such as newline, newpar, newpage,
or space. Such a directive causes SGCAL to format the text it is holding in its paragraph buffer and
allocate it to a page. Any reference to these system variables should always be preceded by a call
to the newline directive (or any other directive that forces a line break).

sys.caps true if upper case being forced
 sys.colseparation the column separation
 sys.columns the number of columns on the page
 sys.contigpending true if a contiguous block is
 being held over
 sys.contiguous true when reading contiguous block
 sys.date today’s date
 sys.daynumber the day in the month
 sys.emphasize true if emphasizing
 sys.fancy true if output is in GCODE
 sys.filling true if line filling is enabled
 sys.font the current absolute font number
 sys.fontgroup the current font group
 sys.footdepth the current foot depth
 sys.foottext true if reading a foot text
 sys.galley true if in galley mode
 sys.graphred the red component of the graphics colour
 sys.graphgreen the green component of the graphics colour
 sys.graphblue the blue component of the graphics colour
 sys.headdepth the current head depth
 sys.hresolution the horizontal resolution
 sys.indent the current, non-temporary, indent
 sys.justify the current justify mode
 sys.lastcontigdepth the depth of the last contiguous block
 sys.leftonpage the space left on the current page
 sys.linedepth the current line depth
 sys.linelength the current, non-temporary, line length
 sys.looseness the current looseness
 sys.minparB the minparB parameter
 sys.minparT the minparT parameter
 sys.monthname the name of the current month
 sys.monthnumber the number of the current month
 sys.pagedepth the current page depth
 sys.pagenumber the current page number
 sys.pagexoffsetR the horizontal page offset
 for right-hand (recto) pages
 sys.pagexoffsetV the horizontal page offset
 for left-hand (verso) pages
 sys.pageyoffset the vertical page offset
 sys.parindent the paragraph indent
 sys.parspace the paragraph space value
 sys.returncode the current return code
 sys.righttoleft true if outputting right-to-left
 sys.rulewidth the width of the next rule
 sys.savetexts true if savetexts has been obeyed

76 System variables

 sys.tabcount the number of tab stops set
 sys.textred the red component of the text colour
 sys.textgreen the green component of the text colour
 sys.textblue the blue component of the text colour
 sys.time the current time of day
 sys.underline true if underlining
 sys.usedcontig the amount of space used in a
 contiguous section
 sys.usedonpage amount of space used on current page
 sys.vresolution the vertical resolution
 sys.year the current year

The value in sys.usedcontig excludes any conditional space that may exist at the start of the
contiguous section (which will be omitted if the section ends up at the top of a page). Footnotes are
a special kind of contiguous section, and sys.usedcontig can be used within them too.

The variable sys.pagexoffset also exists for backwards compatibility. It yields the same value as
sys.pagexoffsetV.

System variables 77

 23. Details of hyphenation

SGCAL attempts automatic hyphenation when it is splitting up a paragraph into lines and it comes
across a line which is very loose, that is, if the amount of unused space left over at the end of the
line is large in comparison with the total amount of white space within the line.

Hyphenation is independent of justification, and can occur on left-justified, right-justified, and
centre-justified lines as well as on lines which are justified at both ends.

By default, SGCAL never hyphenates the last word of a paragraph, nor any word containing capital
letters. A part word at the end of a paragraph does not usually look nice, and nor does a sentence
starting with a hyphenated word; other words containing capitals may be acronyms or proper nouns
which should not be hyphenated. However, the forcehyphen flag can be used to request hyphen-
ation in these cases if required. For example,

The large $fh{ELEPHANT} was made of $fh{aluminium}.

The nohyphen flag can be used to suppress automatic hyphenation for particular words:

Do not $nh{hyphenate}!

The disable and enable directives can also be used to control this option. Disabling automatic
hyphenation does not stop hyphenation at explicit or discretionary hyphens.

To prevent hyphenation at an explicit hyphen, it should be preceded by the quote flag. Note,
however, that an explicit hyphen is in any case recognized as such only if it is preceded and
followed by a letter.

Before attempting to hyphenate a word (which in this sense is any string of characters delimited by
white space), SGCAL ‘cleans’ it by removing all non-letters at the beginning and at the end, and
also the sequence ‘apostrophe s’ from the end if it is present.

SGCAL then attempts to ‘de-plural’ the word by means of the following rules:

• If the word is shorter than five characters, or does not end in ‘s’, de-pluralling fails.

• If the word ends in ‘es’, then if the ending is ‘shes’, ‘ches’, ‘sses’, or ‘oes’, remove ‘es’;
 otherwise, unless the ending is ‘ices’, ‘eses’, or ‘ies’ remove ‘s’.

• If the word does not end in ‘es’ then remove ‘s’ unless the word ends in ‘ss’, or ‘as’, ‘is’,
 ‘os’, ‘us’ or ‘ys’ not preceded by another vowel.

If de-pluralling succeeds (i.e. if something is removed by the de-pluralling algorithm) then the
hyphenation dictionary is searched using the singular form of the word. If an entry is found, it is
used; otherwise another search is tried using the original (plural) form of the word. If de-pluralling
fails, then the dictionary is searched using only the original form of the word.

Hyphens are generated solely by reference to a hyphenation dictionary. They are not generated by
any form of algorithm. It is guaranteed that only those hyphenations that appear in the dictionary
can ever be generated. The current dictionary contains nearly 16,500 words.

The hyphenation dictionary is in principle just a file of hyphenated words, one to a line, in
alphabetical order (excluding the hyphens from the sorting process). However, so that SGCAL can
search it quickly for any given word, it is used with an index of the first four letters of words. This
index is stored at the front of the file and copied into main store when SGCAL starts up. There is
an auxiliary program called sgbuildhy that reads a simple list of hyphenated words and writes a
copy of the list with the index on the front. See section 29.1 for details.

78 Details of hyphenation

 24. Miscellaneous

This chapter describes a few miscellaneous features of SGCAL that need mentioning, but are not
covered elsewhere.

24.1 Kerning
Kerning refers to the adjustment of the space between individual pairs of letters, to obtain nicer
looking output. Compare, for example, ‘AWFUL’ (kerned) and ‘AWFUL’ (unkerned). In the kerned
version, the space between ‘A’ and ‘W’ has been narrowed. Kerning information is contained font
metric tables, and the user need take no action to obtain its benefits.

24.2 Vertical spreading
SGCAL saves up an entire page in store before outputting any of it. If the page is reasonably full,
it stretches it vertically by increasing all the line depths very slightly, so that the bottom line is
exactly at the page depth. This gives much nicer looking pages. Vertical spreading can be disabled
using the disable directive. It can also be independently disabled for individual contiguous sections
using the ‘novstretch’ keyword on the contiguous directive.

24.3 Flag handling
SGCAL scans directive lines for the insert flag only. Other flags are recognized only in text lines,
and what is more, text lines are processed for inserts before they are scanned for other flags. In
effect, SGCAL recognizes the insert flag as a means of operating on the input lines, and the other
flags as the main markup which controls the format of the output.

24.4 Rules and other lines
SGCAL has built-in support for rules (horizontal, vertical, and sloping lines), making it possible to
set up boxed character strings entirely within SGCAL, and also to generate boxes for figures, etc.
As the width and colour of the lines are controllable, the rule feature can be used for generating
coloured background rectangles.

SGCAL also supports the drawing of curved lines in the form of Bezier curves, on output devices
where this is possible (via PostScript). It is possible to write preprocessors for SGCAL that make it
possible to include simple line art within SGCAL input files, and indeed one such preprocessor,
called Aspic, has been implemented. It is distributed separately, because it can generate
Encapsulated PostScript and Scalable Vector Graphics as well as input for SGCAL.

24.5 Widow and orphan lines
A ‘widow’ line is the final line of a paragraph that appears on its own at the top of a page. An
‘orphan’ line is the first line of a paragraph that appears as the last line at the bottom of a page.
SGCAL avoids generating orphan lines and widow lines (except for paragraphs that consist of one
line only).

24.6 Paragraph ends
SGCAL avoids putting a short word on a line by itself at the end of a paragraph. It also never
automatically hyphenates the final word of a paragraph.

Miscellaneous 79

 25. Format of level 4 GCODE

SGCAL produces level 4 GCODE (previous versions were used by SGCAL’s predecessor, GCAL).

25.1 General format
GCODE is a character stream code; line and record boundaries are irrelevant and ignored. It is
recommended that there be no more than 72 characters per line, to avoid potential problems when
transfering GCODE files between different systems. The space character is not used in GCODE
(except possibly in the GCODE heading text), in order to avoid trailing space truncation problems
if GCODE files are copied using text-oriented utilities.

Logically, a GCODE stream consists of printing characters and control sequences, which may be of
fixed or varying length, as defined in the following sections. However, this logical structure is
encoded using printing characters only. This makes it easy to translate from one character code to
another, and also avoids potential difficulties when transmitting GCODE files across networks.

One printing character, the backslash (‘\ ’) is chosen as an escape character for introducing control
sequences. If a backslash character is required as data, it is encoded as the control sequence ‘\& ’.
The more obvious encoding of ‘\\ ’ is avoided, as this gives rise to ambiguities which make it
difficult to process the GCODE without parsing it sequentially.

There is a solitary exception to the use of printing characters. The very first character in a GCODE
file is a backspace. This makes it possible to distinguish GCODE files automatically under normal
circumstances, and it also makes concatenations of GCODE files detectable. (However, the current
version of sgtops does not support concatenated GCODE files.)

25.2 Coordinate system
The GCODE coordinate system has its origin at a point one inch in from the left, and one inch
down from the top of the page, by default. This is the ‘current point’ at the start of a new page; it
is the left-hand end of the baseline for the top line on the page. Almost all movements are relative
to the current point. There are control sequences to alter the ‘page offset’, and these have the effect
of moving the origin.

25.3 Control sequences
Two kinds of control sequence are used in GCODE. The fixed-length control sequences consist of a
backslash character followed by one other character.

The variable-length control sequences are followed by an argument which is a decimal number,
possibly containing a decimal point and fractional part. The argument is terminated by one of a
number of special characters which determine the identity of the control sequence.

As record boundaries are not significant, it is possible for a newline to appear between the
backslash and the following character, or anywhere in the middle of a control sequence.

25.4 Introductory control sequence
The control sequence which appears at the start of a GCODE file consists of a backspace character
followed by a digit identifying the version of GCODE being used. The character for the version
described in this document is ‘4’. This is the only use of backspace (or any other non-printing
character) in GCODE.

The GCODE proper starts with the first backslash character following the version number. Any
other characters may appear before it, allowing identifying information to be included in the file.
SGCAL puts the text

GCODE file written by SGCAL < version> (< style>)
 on < date> at < time>

80 Format of level 4 GCODE

between the GCODE version number and the first backslash.

25.5 Control sequences without arguments
The following control sequences are of fixed length and have no arguments:

\& include a backslash as a data character
 \f start/end a filled shape
 \F begin a new page
 \N begin a new line
 \n next footnote number
 \o reset footnote number

The depth of line must be set before the use of \N , and between it and the start of the next line,
control sequences such as \F (new page) or \< n>) (global move down) may appear. The start of
the next line is indicated by the appearance of a printing character or a control sequence pertaining
to an individual line (local move left, right, up, or down).

The \f sequence should always appears as a pair. Between the two occurences, only sequences that
define lines or curves should normally appear. The shape that is defined by the path they define is
filled with the current graphics colour. If any other type of item appears between instances of \f ,
the result is undefined.

The \n and \o sequences are used by SGCAL when it is configured to reset footnote numbers for
each page. Instead of outputting an actual number, it outputs \n , and at the start of each page and
the start of each footnote section, it outputs\o reset the footnote number. This approach is used
because SGCAL does not know which page a footnote will end up on at the time it generates it.
The scheme works only if there are never more than nine footnotes on a page.

25.6 Control sequences with arguments
An escape character (‘\ ’) followed by a decimal number, possibly including a decimal point, and
possibly preceded by a minus sign, is used to introduce a number of different variable-length
sequences of the form

\< n><t>

where <n> is the sequence of decimal digits etc. representing an argument value. When this value
is interpreted as a dimension, its units are points. The control sequence is terminated by one of a
number of characters, <t>, which identify the control function required.

Separate control sequences for moving up, down, left, and right are provided, because they are
frequently used. The values of their arguments are always positive.

25.7 Control sequences before the first page
Certain control sequences may appear only at the start of a GCODE file, before the first printing
page. This restriction makes it possible for a program that processes GCODE to skip pages very
rapidly. These control sequences are:

\< n>=<m>"< font name>"

This specifies a font binding for font number <n> (a value in the range 0–99). The argument <m>
specifies the size required for the font. It consists of decimal digits only and is in millipoints. By
convention, the font name is normally split into two parts, separated by a slash. The first identifies
a class of fonts, and the second a particular font within the group, for example

\22=15000"atl/Times-Roman"

Any given font must not be bound more than once. The bindings may appear in any order.

\< n>H
 \< n>V

Format of level 4 GCODE 81

These sequences specify a horizontal and vertical page offset, respectively, for every page in the
document. In effect, they move the default position of the origin of the coordinate system. Their
arguments may be positive or negative.

\< n>h

This specifies a horizontal page offset for recto (right-hand) pages only. To specify different offsets
for verso and recto pages, \< n>H should first be used to set the same value for both, then the value
for recto pages can be changed using \< n>h.

25.8 Control sequences on pages
This section describes those control sequences that may only appear within the data for a given
page. A page starts with the sequence \F , and this is always followed by two further sequences:

\< n>P

This specifies the logical page number for the page, as specified by the page command to SGCAL.
This makes it easier for programs that process SGCAL to access pages by logical number, as well
as by their absolute position in the GCODE file.

\< n>C

This specifies a column offset for subsequent output. At the start of a page the argument value is
always zero, but if there is more than one column on the page there will be subsequent calls within
the page specifying different values. This parameter is in effect a local page offset.

At the start of a page, there is always an explicit selection of a font, and an explicit setting of the
vertical spacing increment. Underlining is assumed to be off. This makes it possible for programs
that process the GCODE to skip pages simply by searching for instances of \F in the file.

The following control sequences are used within pages to control the printing of characters, rules,
and Bezier curves:

\< n>X

This specifies a horizontal movement to the absolute x-coordinate given by the argument. The
current y-coordinate is unaltered. This is the only non-relative movement specified in GCODE. It is
used by SGCAL to move to positions for printing emphasis bars.

\< n>>

This specifies a relative horizontal movement to the right. Its argument is always positive. It is used
for tabs and spaces within lines.

\< n><

This specifies a relative horizontal movement to the left. Its argument is always positive.

\< n>$

This specifies a relative vertical movement down the page, and local to the current line. It is used
for subscript/superscript handling, and its argument is always positive.

\< n>%

This specifies a relative vertical movement up the page, and local to the current line. It is used for
subscript/superscript handling, and its argument is always positive.

\< n>)

This specifies a global relative vertical movement down the page. It is used for page filling and the
SGCAL space directive, and appears only between lines. Its argument is always positive.

\< n>(

This specifies a global relative vertical movement up the page. Its argument is always positive, and
it appears only between lines. It is used for the SGCAL space directive when it has a negative
argument, and also for re-positioning to the top of a new column in multi-column output.

82 Format of level 4 GCODE

 \< n>!

This specifies the vertical spacing increment, that is, the vertical distance between successive lines
on the page, which is the amount of downward movement that takes place when the \N sequence is
obeyed. This sequence is always output before the first occurrence of \N on a new page.

\< n>_

This specifies whether succeeding characters are to be underlined or not. The argument is either 0
for no underlining, or 1 for underlining. Underlining is always considered to be off at the start of a
new page.

\< n>:

Selects font number <n> for succeeding printing characters.

\< n>/

This specifies that character number <n> is to be output from the current font. It is used for
characters that are not in the normal printing set. SGCAL font encodings are based on the Ascii
character set.

\< n>G
 \< n>b
 \< n>g
 \< n>r

These settings control the colour of subsequent text or graphics. \G sets all three colour com-
ponents to the same value, that is, it sets black, white, or a shade of grey. The other three change
the individual red, green, and blue colour components.

\< n>T

This specifies the thickness of subsequent rules and Bezier curves. SGCAL always outputs an
explicit thickness for each rule and Bezier curve that it generates.

\< n>I\< m>I

This sequence specifies a dash pattern for the next rule or curve only. The first number gives the
length of the dashes, and the second the length of the spaces.

\< n>R
 \< n>U

This requests that a horizontal or vertical rule, respectively, be drawn. The argument <n>, which
may be negative, specifies the length of the rule. For vertical rules, positive is upwards. The current
point moves to the end of the rule.

\< n>S\< m>S

This sequence requests that a sloping rule be drawn. The arguments specify the horizonal and
vertical dimensions of the rule, respectively, and may be negative. The current point moves to the
end of the rule.

\< x1>Q\< y1>Q\< x2>Q\< y2>Q\< x3>Q\< y3>Q

This sequence requests that a Bezier curve be drawn from the current point to a point whose
position relative to the current point is (<x3>,<y3>). The intermediate pairs of numbers give the
coordinates of the Bezier control points, again relative to the current point. The thickness and
greyness of the curve are controlled in the same way as for rules. The current point moves to the
end of the curve.

25.9 Control and request strings
The control sequence

\D< characters>\D

Format of level 4 GCODE 83

represents a device control string, which is intended as an escape mechanism for controlling
devices not handled by the existing facilities. It is generated as a result of obeying the SGCAL
directive control. When sgtops is used to process GCODE, control strings are interpreted as inline
PostScript.

The control sequence

\A< characters>\A

is used as a general mechanism for passing information to programs that interpret GCODE. It is
generated as a result of obeying the request directive in SGCAL. By convention the text starts with
a device name terminated by a colon. For example:

\APostScript:landscape\A

is an instruction to sgtops to output in landscape format. Processors that do not recognize the initial
name should ignore the request sequence.

If the backslash character is required as part of a ‘control’ or ‘request’ string, it appears as ‘\& ’. In
fact, backslash is also used at a higher level as an escape for certain special characters within the
string, as follows:

\N newline
 \S space
 \\ backslash

These are therefore encoded in the GCODE as

\&N newline
 \&S space
 \&\& backslash

Control and request strings may appear both before the first page of text, and within the data for a
page.

84 Format of level 4 GCODE

 26. Font metric definitions

SGCAL reads in the widths of the characters in a font whenever the bindfont directive is obeyed.
The width information is held in human-readable form in a font library, which consists of a number
of separate font files.

There is a fairly common format for font metric information known as an AFM file; in particular
this is used for many PostScript fonts. If an AFM file is available for a particular font, SGCAL can
be instructed, by entries in its font file, to read the character width and kerning information from
the AFM file. Otherwise this information must be provided in the SGCAL font file.

The name of each font file has to be derived from the font name which is given to the bindfont
directive. The first part of the name (before the slash) is used as the name of a sub-directory in the
SGCAL library in which to look for the font file proper.

In the SGCAL library there is a file called FontTran which consists of a number of lines of text,
each containing a font name and the equivalent font library file name. This indirection is a result of
history. An example of an entry in this file is:

Palatino-Roman Palatin-rm

If a font is requested which is not in this configuration file, SGCAL takes the first 14 characters of
its name. (See how old this code is!)

If a font file cannot be found for a given font, or if the data in the file does not correspond to the
given font name, SGCAL generates an error message and exits with a serious error code.

SGCAL is designed to make use of the existing fonts in a printing device. The data in the font
library must therefore correspond to the capabilities of the device if correct formatting is to be
achieved.

26.1 Font file format

The format of an individual font file is now described. All dimensions are given in millipoints for a
1-point font. Thus, for example, if a character width is specified as 722, then that character in a
10-point version of the font would be 7.22 points wide. All font files start as follows:

FONT "< font name>"
 REQUEST "<request information>"
 SPACE <n>
 THINSPACE <n>
 EXACTSPACE <n>
 HYPHEN <n>
 LIGATURES <count>
 <ligature data>

If the width and kerning information is to be provided inline, the rest of the font file takes the
following form:

KERNS <count>
 <kerning data>
 WIDTHS
 <256 widths>

Alternatively, if the width and kerning information is to be read from an AFM file, the rest of the
font file takes this form:

ENCODING "<encoding file name>"
 AFMFILE "< AFM file name>"

Font metric definitions 85

After the initial identification line, the keywords may appear in any order, except that ENCODING
must precede AFMFILE . The keywords are all optional, except that ifAFMFILE is present, then
ENCODING is mandatory, and WIDTHS and KERNS must not be present.

The purpose of the optional REQUEST that which follow the font identification is to pass infor-
mation to programs that interpret the GCODE generated by SGCAL. At present there are no
programs that make use of font request information.

The SPACE keyword has the effect of setting a value for all three space parameters; thus it
normally comes first if either of the other two are specified. The ‘ordinary’ space is the width used
to separate words in this font. It can, of course, be stretched to effect justification, and it is subject
to SGCAL’s ‘looseness’ parameter for an individual paragraph.

The HYPHEN keyword defines which character in the font is to be used as a hyphen character. The
default is 45, the minus character in the ASCII encoding.

The LIGATURES keyword is followed by a number which specifies the number of lines of data
which follows it. Each ligature data line consists of a specification of three characters. If the first
two are encountered together in a word, they are replaced by the third. A character may be
specified either as a number represending an ASCII encoding, or as a character preceded by a single
double-quote character. For example,

LIGATURES 2
 "f "i 174
 "f "l 175

specifies that‘f ’ followed by ‘i’ is to be replaced by character number 174, and‘f ’ followed by ‘l’
is to be replaced by character number 175. The ligature definitions can be presented in any order,
and any text after the first three items on the line is ignored.

26.2 Inline kerning and width data
Inline kerning data is specified in a similar way to ligatures. Each line consists of the specification
of two characters followed by a dimension. A negative dimension indicates that the characters
should be moved closer together, while a positive one indicates that they should be moved further
apart. Any text following the third item on each line is ignored and may be used for comment. For
example,

KERNS 3
 "A "W -80
 "f "’ 55
 "f 174 -18 f followed by fi

The WIDTHS keyword appears on a line by itself. It must be followed by 256 widths for the
characters in the font. They may occupy as many lines as necessary.

Here is an example of the definition of a PostScript font with inline kerning and width data
(shortened to save space).

FONT "Times-Roman"
 REQUEST "preview: FONT # atl"
 SPACE 312
 THINSPACE 100
 EXACTSPACE 600
 HYPHEN 45
 LIGATURES 2
 "f "i 174
 "f "l 175
 KERNS 102
 "’ "’ -74
 "’ "s -55
 <100 more lines of kerning data>
 WIDTHS

86 Font metric definitions

 722 722 722 722 722 722 667 611
 <31 more lines of width data>

26.3 Kerning and widths from an AFM file
When the kerning and width data are to be read from an AFM file, the font file contains pointers to
two other files: the AFM file itself, and a file that defines the encoding scheme. AFM files contain
definitions of characters by name, and it is the encoding file that associates each character with a
code number.

The following example is for a PostScript file for which an AFM file is available:

FONT "Times-Roman"
 REQUEST "preview: FONT # atl"
 SPACE 312
 THINSPACE 100
 EXACTSPACE 600
 HYPHEN 45
 LIGATURES 2
 "f "i 174
 "f "l 175
 ENCODING "standard"
 AFMFILE "Times-rm"

SGCAL searches in an encoding library for the encoding file, and in an AFM library for the AFM
file; the whereabouts of these libraries are built into the SGCAL binary, but can be overridden on
the command line. The encoding file contains a list of 256 character names, with full stops for
those that are undefined. The SGCAL standard encoding is as follows:

Aacute Acircumflex Adieresis Agrave Aring Atilde Ccedilla Eacute Ecircumflex Edieresis
 Egrave Iacute Icircumflex Idieresis Igrave Ntilde Oacute Ocircumflex Odieresis Ograve Otilde
 Scaron Uacute Ucircumflex Udieresis Ugrave Ydieresis Zcaron Yacute Eth Thorn trademark
 space exclam quotedbl numbersign dollar percent ampersand quoteright parenleft parenright
 asterisk plus comma hyphen period slash zero one two three four five six seven eight nine colon
 semicolon less equal greater question at A B C D E F G H I J K L M N O P Q R S T U V W
 X Y Z bracketleft backslash bracketright asciicircum underscore quoteleft a b c d e f g h i j k l
 m n o p q r s t u v w x y z braceleft bar braceright asciitilde . aacute acircumflex adieresis
 agrave aring atilde ccedilla eacute ecircumflex edieresis egrave iacute icircumflex idieresis igrave
 ntilde oacute ocircumflex odieresis ograve otilde scaron uacute ucircumflex udieresis ugrave
 ydieresis zcaron yacute eth thorn copyright Euro exclamdown cent sterling fraction yen florin
 section currency quotesingle quotedblleft guillemotleft guilsinglleft guilsinglright fi fl . endash
 dagger daggerdbl periodcentered . paragraph bullet quotesinglbase quotedblbase quotedblright
 guillemotright ellipsis perthousand . questiondown . grave acute circumflex tilde macron breve
 dotaccent dieresis . ring cedilla . hungarumlaut ogonek caron emdash onequarter onehalf
 threequarters brokenbar onesuperior twosuperior threesuperior logicalnot plusminus minus divide
 multiply degree mu registered . AE . ordfeminine Lslash Oslash OE ordmasculine
 ae . . . dotlessi . . lslash oslash oe germandbls

This is the standard encoding used by Adobe fonts, with additional assigments for those characters
not given an encoding by Adobe, as detailed in section 10.10 above.

Font metric definitions 87

Part III

Auxiliary programs

 27. The sgtops command

The sgtops command is a program for converting GCODE output from SGCAL into PostScript. It
is capable of selecting particular pages, making certain size reductions and magnifications, and
arranging small pages appropriately on larger sheets.

sttops [-from] < file> [-to < file>] [-header < file>]
 [-pages < list>] [-format < name>] [-reverse]
 [-odd] [-even] [-noduplex] [-nocolour]
 [-pamphlet [1|2]] [-copies < n>] [-landscape]
 [-quiet] [-help]

If no destination file is specified, the output is written to a file whose name is constructed from the
input file by replacing its extension, if any, with .ps . If neither input not output files are specified,
input is read from the standard input and written to the standard output.

The -header option specifies a PostScript header file; you should not normally need to use this
option. When it is omitted, the file PShead in the SGCAL library is used.

The keywords -to, -pages, -format, and -pamphlet may be abbreviated to -o, -p, -f, and -pa,
respectively.

The list of pages to include consists of comma-separated items, each item consisting of a single
number or a pair of numbers separated by a minus sign. The list should be in ascending order. The
numbers refer to the count of pages in the GCODE file, that is, they arephysical page numbers, for
example,

sgtops myfile.sgout -p 1-4,7,18-22

The -odd and -even options cause only odd-numbered or even-numbered pages, from among those
selected, to be processed.

The -format item specifies the format of the input file and how is it to be reduced or magnified, if
required. This overrides any format specification that may be embedded in the GCODE. Allowed
values for the format name are:

a3 input is formatted for A3 page size
 a4 input is formatted for A4 page size
 a5 input is formatted for A5 page size
 a6 input is formatted for A6 page size

a3toa4 input is formatted for A3 page size; reduce it to A4
 a3toa5 input is formatted for A3 page size; reduce it to A5
 a3toa6 input is formatted for A3 page size; reduce it to A6

a4toa3 input is formatted for A4 page size; enlarge it to A3
 a4toa5 input is formatted for A4 page size; reduce it to A5
 a4toa6 input is formatted for A4 page size; reduce it to A6

a5toa3 input is formatted for A5 page size; enlarge it to A3
 a5toa4 input is formatted for A5 page size; enlarge it to A4
 a5toa6 input is formatted for A5 page size; reduce it to A6

A5 and A6 pages are printed two-up and four-up, respectively, on an A4 page, and similarly, when
A3 paper is being used, multiple A4 and A5 page images are printed on each page.

The -reverse option causes the selected pages to be output in reverse order; this is really only of
use for pages that are the same size as the paper, as otherwise the ordering of multiple smaller
pages on larger paper will be strange.

The default is to generate PostScript that specifies duplex printing if the printer has that capability,
in ‘tumble’ mode if pamphlet is used. This can be disabled by specifying -noduplex.

The sgtops command 91

If -nocolour is specified, any colour specifications are converted to grey levels by averaging the
sum of the red, green, and blue components. However, as most black-and-white printers can
themselves turn colours into greylevels, this option will rarely be needed.

The -pamphlet option is useful for A5 and A6 pages printed on A4 paper, or for A4 and A5 pages
printed on A3 paper. It causes the pages to be output in the correct order such that the resulting
pages can be reproduced double-sided directly and then folded and bound. If -pamphlet is followed
by the number 1, then only the first of every pair of full-size page images is output; if it is followed
by 2, then the second of every pair is output. This makes it easy to print all the first sides, then put
the output pages back into a non-duplex printer to print the second sides.

The -pamphlet option can be used in conjunction with the-pages option. It prints only those pages
that are selected, but in the appropriate pamphlet configuration.

The -copies option does what its name implies; the keyword must be followed by a number, and it
inserts in the PostScript a directive which causes multiple copies of each page to be printed.

The -landscape option causes pages to be printed in landscape (long side horizontal) instead of the
default portrait (short side horizontal) orientation. This applies to the logical pages, not necessarily
to the physical pages.

Finally, the -quiet option suppresses the comments that sgtops normally outputs.

27.1 Control and request sequences in GCODE
sgtops treats control sequences in the GCODE (generated by the SGCAL control directive) as in-
line PostScript, and copies them directly to the output.

sgtops also recognizes a number of request sequences (generated by the SGCAL request directive).
Those that are not recognized are ignored. The following requests are recognized:

PostScript: format < format>

If the -format keyword (see above) is not used on the command line, the value from this request is
used.

PostScript: font < number>

This request forces sgtops to output a setting for the given font number in the PostScript. Normally,
it outputs a font number only when it is about to output text in that font. However, if some external
PostScript is about to be included, having the current font forcibly set first may be necessary.

PostScript: get < filename>

The named file is included verbatim in the output.

PostScript: landscape
 PostScript: portrait

These requests tell sgtops the orientation that is to be used.

PostScript: modifyfont < number> < string>

This request causes a font to be modified. The <string> is PostScript that is applied to the font
when it is defined. The most common use of this it for creating slanted fonts. For example, the
a4ps standard style contains several SGCAL commands of this form:

.request "PostScript: modifyfont 2 +++
 font 2 get [1 0 0.25 1 0 0] +++
 makefont font 2 3 -1 roll put "

For the inclusion of images, sgtops recognizes:

jpeg: < num> < denom> < filename>
 png: < red> < green> < blue> < filename>

92 The sgtops command

which request the inclusion of the named JPEG or PNG file, respectively. For a JPEG file, the first
two arguments specify a JPEG decompression ratio. For a PNG file, the first three arguments
specify the colour of the background that is to be used if the image contains transparent pixels.

The sgtops command 93

 28. The sgpoint program and style

The sgpoint command is used to display full-screen images that are suitable for projection. In other
words, it is a slide-show bolt-on for SGCAL. The command reads a Gcode file, and displays its
contents in a window that is just larger than the physical screen size, so that the window
decorations are not visible. If you are running a window manager with a virtual screen and can
move to other parts of it using the mouse, you can ‘escape’ to see other windows while leaving
sgpoint’s display still available. The sgpoint window is moveable if you can get to its moving
handles.

sgpoint expects the output to have an appropriate page width and depth. Typically, it will have
been formatted using the sgpoint style, which is described below. This style operates in three
modes: a ‘display’ mode for showing slides, a ‘handout’ mode for printing handouts, two-up on A4
paper, and a ‘table-of-contents’ mode for making a list of the slides.

28.1 Building sgpoint
sgoint uses the GTK+ library, and also the JPEG and/or PNG libraries if you want to display JPEG
or PNG images in slides. At present, JPEG and PNG are the only kinds of image that are
supported.

To compile the SGCAL suite to include sgpoint, add --enable-sgpoint to the ./configure command.
To include the JPEG support as well, add --enable-jpeg, and similarly, for PNG, add --enable-png.
The JPEG and PNG support, if so configured, also applies to sgtops. You may also need set
CFLAGS and LFLAGS for ./configure if the GTK+, JPEG, or PNG libraries and include files are
not in the standard places.

28.2 Running sgpoint
If sgpoint is started without any arguments, it prompts in a dialogue box for a file name.
Otherwise, the name of the file containing the Gcode can be given on the command line. There are
are no other arguments or options. For example:

sgpoint myslides.sgout

The following keystrokes are recognized:

space Advance to next part of the current slide (if the slide contains waits) or to the next slide if
 there are no more waits.

G Puts up a dialogue box into which you can type a slide number. PressReturn to go to that
 slide.

Q Quits sgpoint.

R Reloads the input file. This is useful for testing while creating a slide set.

→ Advance to the next slide, skipping any pending undisplayed parts.

← Go back to the previous slide.

The left mouse button has the same effect as space and the right mouse button has the same effect
as a left arrow.

No other keys or buttons have any effect.

28.3 Control and request sequences in Gcode
sgpoint ignores control sequences in the Gcode – there should not normally be any.

sgpoint recognizes the following request sequences:

sgpoint: wait

94 The sgpoint program and style

This marks a ‘wait point’ in the slide. The display is halted until the space bar or the left mouse
button is pressed. This feature makes it possible to ‘reveal’ a slide bit by bit, including overlaying
parts of it.

sgpoint: background < red>,< green>,< blue>

This request sequence specifies a colour for the background to the slides. For example, the
following SGCAL directive generates a request of this type.

.request "sgpoint: background 0.8,0.8,1.0"

There is a convenience macro called background in the sgpoint style (see below). Space is an
acceptable alternative to comma as a separator.

jpeg: < num> < denom> < filename>

This sequence requests the display of the JPEG image in the given file with its top left hand corner
at the current point. The image can be scaled by setting <num> and <denom>, but this scaling is
limited by the JPEG library to 1/1, 1/2, 1/4, or 1/8. There is a convenence macro called jpeg in the
sgpoint style. This should normally be used, because it adjusts the PostScript scale for handout
output.

png: < red> < green> < blue> < filename>

This sequence requests the display of the PNG image in the given file, with its top left hand corner
at the current point. The colour that is specified is used as the background colour for images that
contain transparent pixels. There is a convenience macro called png in the sgpoint style. This
should normally be used, because it adjusts the PostScript scale for handout output.

The numerical arguments for both JPEG and PNG display requests may be separated by commas
instead of spaces.

28.4 The sgpoint style
When an input file is processed normally using the sgoint style, the output is formatted for screen
display. The slide number is shown in the bottom right hand corner. The line length and page depth
work nicely on my laptop screen, but may need adjusting for different screen sizes.

If the variable toc is defined while processing using the sgpoint style, SGCAL generates a table of
contents that is written to the aside file. The normal output is also generated.

If the variable handout is defined while processing using the sgpoint style, SGCAL generates
output with two slides per page, each enclosed in a box, for an A4 page size. The easiest way to do
this is, for example:

sgcal myslides.sg -d handout

Note that-d should be at the end of the command because it can define more than one variable.
Output produced by a run of this kind must be processed by sgtops in the usual way before
printing. Centred page numbers are added as a footing; you can add to the footing by setting the
variables footleft, footcentre, and footright if you wish. Alternatively, you can provide your own
foot setting – copy the one from the style so as to preserve the numbering for slides.

You can set typeface and sanstypeface before including the style, in the same was as for the
normal a4ps style. The standard flags are defined, and you can use useaccents, usegreek, and
usespecials in the normal way.

You can set the variables displaycolour and seccolour to set the colour for text in displays and
second-level bullet points (the default is black). If you want to do this only for slides, and not for
handouts, use something like this:

.if !set handout
 .set displaycolour "0.2,0.2,1.0"
 .set seccolour "0.4,0.5,0"
 .fi

The sgpoint program and style 95

The following macros are defined in the sgpoint style:

.a <text>
Outputs a top-level bullet point.

.ab <text>
Outputs a top-level bullet point, followed by a ‘blank’ of white space.

.as <text>
Outputs a top-level bullet point, followed by one linedepth of white space.

.aspic
The start of an in-line Aspic input section, for a line-art drawing. There is no need to put this inside
a display – all that is handled automatically. This macro can be given, as an optional argument, the
name of the Aspic command that is to be run (the default is ‘aspic’). This is useful for testing.

.at <n>
Moves to an absolute position on the slide, measured from the top.

.b <text>
Outputs a second-level bullet point.

.background <red>,<green>,<blue>
Sets a background colour for slides; ignored for handouts. Spaces can be used instead of commas
as a separators.

.bb <text>
Outputs a second-level bullet point, followed by a ‘blank’ of white space.

.blank <n>
Include vertical white space, approximately half a line depth times <n>.

.box <text>
Displays the text inside a rectangular box.

.bs <text>
Outputs a second-level bullet point, followed by one linedepth of white space.

.display <args>
Much the same as in other SGCAL styles, except that the only available arguments areasis and
rm.

.endd
Ends a display.

.enddb
Ends a display, followed by a ‘blank’ of white space.

.endds
Ends a display, followed by one linedepth of white space.

.endspic
Ends an Aspic definition.

.jpeg <file> <indent> <depth> <num> <denom>
Include an image from a JPEG file. The indent defaults to zero, and the depth to 10ld . The <num>
and <denom> are the JPEG decompression scaling, defaulting to 1/1. The only valid values are 1/1,
1/2, 1/4, and 1/8. The current point is not moved automatically; you have to set the depth explicitly.

.png <file> <indent> <depth> <background colour>
Include an image from a PNG file. The indent defaults to zero, and the depth to 10ld . The
background colour is used only if the PNG image contains transparent pixels. It should be specified
as three comma-separated numbers. The current point is not moved automatically; you have to set
the depth explicitly.

.rule
Draws a horizontal rule.

96 The sgpoint program and style

.s
A shorthand for .space with an argument of 1ld .

.slide <title>
Start a new slide; the title may be empty (the default).

.toc <title>
If a slide has no title, you can specify a string to be used in the table of contents via this macro.

.wait
Inserts a ‘wait point’ into the slide. Note that wait points can also be specified inside Aspic graphic
definitions.

The sgpoint program and style 97

 29. The sgbuildhy and sghytest commands

The sgbuildhy and sghytest commands are auxiliary programs that build and test SGCAL’s
hyphenation dictionary, respectively.

29.1 The sgbuildhy command

sgbuildhy < source file> < destination file> [< max index size>]

This command builds an indexed hyphenation dictionary. The source file that is supplied with
SGCAL is in the src directory, and is called hyphenlist. It is an alphabetically ordered list of
words, one per line, each containing a hyphen at all its potential hyphenation points. For example,
here is a short extract:

eye-tooth
 eye-wash
 eye-wit-ness
 fab-ri-cation
 fab-ri-cator
 fabu-lous
 fabu-lously

You must ensure that the words are in alphabetical order, and that there are no trailing spaces;
otherwise, the resulting dictionary will not work properly.

Note that SGCAL ‘de-plurals’ words before searching the dictionary. See the description in chapter
23 for the rules that are used. However, for some plural forms you have to include both versions.
For example:

bat-teries
 bat-tery

If you include a word only it its plural form, the singluar will not be hyphenated. An example of
this is

bed-clothes

The sgbuildhy command creates a destination file that is a copy of the source file, preceded by an
index that specifies points in the file where words with certain four leading characters start. Here is
part of a typical index:

hate47724
 hawt47817
 hazi47913
 heal48154

This means that the words starting with ‘hate’ begin at offset 47724 in the file, and so on. The very
first line of the file contains the number of index entries.

By default, the maximum size of the index is 2048 entries, but this can be changed by giving a
third argument to the command. In practice, the index is likely to be smaller than the maximum,
because duplicates are removed. The currently distributed list contains approximately 16,000 words.
Thus there should be an index point roughly every eight words, but there are many sequences of
more than eight words with the same initial four letters.

29.2 The sghytest command

sghytest < dictionary> [< input file> [< output file>]]

The sghytest command is used to test new hyphenation dictionaries that have been built by
sgbuildhy. The first, mandatory, argument is the name of the dictionary to be tested. Input and
output files can be specified; if they are not, the standard input and output are used.

98 The sgbuildhy and sghytest commands

The input file is split up into words (there may be any number on a line). The output shows the
hyphenation points for the words, one per line.

The best way to test a new hyphenation dictionary is to make a copy of the source file, remove all
the hyphens, and run it through sghytest. The result should be identical to the original source file.
The most common reason why it may not be is that the original is not in alphabetical order.

The sgbuildhy and sghytest commands 99

