

Designing
Object
Systems
Object-Oriented Modelling with Syntropy

Steve Cook &
John Daniels

First published 1994 by

Prentice Hall International (UK) Ltd

© Steve Cook and John Daniels, 1994

Some rights reserved.

This edition is made available under the

Creative Commons Attribution No Derivatives license

 http://creativecommons.org/licenses/by-nd/3.0/

 v

Contents

 Preface xv

Part One Systems, models and views 1

 1 Systems, models and views 3

1.1 The ecology of software 3

1.2 Modelling 4

1.3 Software and the world 6

1.4 Essential models 12

1.5 Specification models 14

1.6 Implementation models 16

1.7 Views and notations 19

1.8 Encapsulated software components 21

1.9 Method 21

1.10 Summary 22

1.11 Bibliographic notes 23

1.12 References 23

Part Two Modelling the world 27

 2 Describing structure:the basics 29

2.1 Objects, values and events 29

2.2 Types 30

2.3 Properties 32

2.3.1 Value types 33

2.3.2 Parameterised properties 33

2.3.3 Multi-valued properties 33

2.4 Associations 34

2.4.1 Roles 35

2.4.2 Multiplicities 35

vi Contents

2.4.3 Qualifiers 37

2.4.4 Aggregation 38

2.4.5 Association properties 40

2.4.6 Ternary associations 42

2.4.7 Use of ‘?’ 42

2.5 Type extension 43

2.5.1 Abstract types 44

2.5.2 Using sub-types to eliminate optional associations 45

2.6 Constraints and invariants 46

2.6.1 Logical type invariants 46

2.6.2 Sub-ranges 47

2.6.3 Property invariants 47

2.6.4 ‘nil’ 48

2.6.5 Constraints on associations 48

2.6.6 Constraints between associations 50

2.6.7 Subset constraints 50

2.7 State types 51

2.8 Summary 53

2.9 Bibliographic notes 54

2.10 References 54

 3 Describing structure:adding more detail 55

3.1 In search of expressive power 55

3.2 Navigation 55

3.2.1 Name-space 55

3.2.2 Expressions 56

3.2.3 Encapsulation – a warning 61

3.3 Derived associations 62

3.3.1 Derived associations to state types 63

3.4 Recursive associations 63

3.5 Sub-types 67

3.5.1 Non-disjoint sub-types 67

3.5.2 Multiple super-types 69

3.5.3 Overriding 70

3.6 The meaning of invariants 74

3.7 Value types 75

3.8 Summary 76

3.9 Bibliographic notes 77

3.10 References 77

 4 Describing behaviour:the basics 78

4.1 Modelling behaviour 78

4.2 Events 78

4.2.1 What events are 78

 Contents vii

4.2.2 Describing events 79

4.2.3 Initial object configurations 81

4.2.4 Discovering events 84

4.2.5 Event validity 85

4.2.6 Pre-conditions 87

4.2.7 Consequences 88

4.2.8 The event table 88

4.2.9 Event scenarios 89

4.3 Describing behaviour with objects 90

4.4 States 90

4.5 Statecharts 92

4.5.1 Statechart elements 93

4.5.2 The event list 93

4.5.3 Transitions 94

4.5.4 Nested states 95

4.5.5 Correspondence between the state and type views 97

4.5.6 Pre-conditions 97

4.5.7 Guards 98

4.5.8 Statechart as state 99

4.5.9 Allowed events 100

4.5.10 Event sequence validity 101

4.5.11 Post-conditions 101

4.5.12 Creation operations 103

4.5.13 Creating objects 105

4.5.14 Creating associations 106

4.5.15 Finalisation 108

4.6 Summary 108

4.7 Bibliographic notes 110

4.8 References 110

 5 Describing behaviour:adding more detail 111

5.1 The importance of behaviour 111

5.2 Statecharts and objects 111

5.2.1 The use of ‘self’ 111

5.2.2 Filters 113

5.3 Location of post-conditions 118

5.4 Variables 119

5.5 State invariants 119

5.6 Creation operations and sub-types 120

5.6.1 Propagation to multiple super-types 121

5.7 Orthogonal state machines 123

5.7.1 Event sequence validity rule 125

5.7.2 Showing orthogonal state on type views 127

5.8 Summary 127

viii Contents

Part Three Models of software 131

 6 Software specification 133

6.1 The software boundary 133

6.2 Agents 134

6.3 Type views 136

6.4 Events 137

6.4.1 Pre-conditions 139

6.4.2 Event scenarios 139

6.4.3 The event table 142

6.5 State views 142

6.5.1 Generated events 142

6.5.2 Entry and exit generations 143

6.5.3 Internal events 145

6.5.4 Event ordering 146

6.5.5 Events generated and detected by ‘self’ 147

6.6 Object responsibilities 148

6.7 Unordered events 148

6.8 Summary 150

6.9 Bibliographic notes 151

6.10 References 151

 7 Describing the implementation 152

7.1 The implementation model 152

7.2 Mechanisms 153

7.2.1 The anatomy of operations 154

7.2.2 A simple mechanism 157

7.2.3 Object creation and variable assignment 159

7.2.4 Forwarding 160

7.2.5 Subsequent processing 160

7.2.6 Message ordering 161

7.2.7 Partitioning mechanisms 162

7.2.8 Assigning message results 164

7.2.9 Using associations 164

7.2.10 Showing results 165

7.2.11 Message-sequence diagrams 166

7.3 Type views of the implementation model 166

7.3.1 Observers and updaters 167

7.3.2 Observing associations 168

7.3.3 Navigation expressions and messages 169

7.3.4 Super-type name clashes 169

7.3.5 Structural conformance 169

7.3.6 Meaning of invariants 170

7.3.7 Visibilities 170

 Contents ix

7.4 State views of the implementation model 173

7.4.1 The processing sequence 174

7.4.2 Showing message-sending on statecharts 175

7.4.3 Pre-conditions 176

7.4.4 Guards 176

7.4.5 Variables 176

7.4.6 Post-conditions 177

7.4.7 ‘Allow’ 179

7.4.8 Entry and exit actions 180

7.4.9 Combining the textual and body parts 181

7.4.10 Finalisation 182

7.4.11 Transition decomposition 182

7.5 Exceptions 186

7.5.1 The ‘wrongState’ exception 187

7.5.2 The exception hierarchy 187

7.5.3 Exception handling 187

7.5.4 Raising exceptions 189

7.5.5 Exceptions and conformance 190

7.6 Summary 191

7.7 Bibliographic notes 192

7.8 References 192

 8 Sub-types, inheritance and conformance 193

8.1 Sub-typing and inheritance: what is ‘is’? 193

8.2 Specification model sub-typing 195

8.2.1 Type-conformance rules 206

8.2.2 Conformance is an ideal 212

8.3 Implementation model sub-typing 214

8.3.1 Sub-type statecharts 216

8.4 Essential model sub-typing 216

8.4.1 Inheritance of state types 217

8.4.2 Sub-type statecharts 219

8.5 Summary 222

8.6 Bibliographic notes 222

8.7 References 223

 9 Concurrency 224

9.1 Threads of control 224

9.2 Strategies for concurrency 226

9.3 Serialisation 228

9.3.1 Observers and updaters 229

9.3.2 Basic concurrency rules 229

9.3.3 Invoking local observers 230

9.3.4 Secured and relaxed sections 231

x Contents

9.3.5 Invoking local updaters 235

9.3.6 Creation operations 237

9.3.7 Rules and pragmatics 237

9.4 Synchronisation specifications 237

9.4.1 Exclusive and non-exclusive suppliers 238

9.4.2 The non-exclusive contract 240

9.4.3 Synchronisation constraints 240

9.4.4 Synchronisation and conformance 241

9.4.5 Synchronisation expressions 242

9.4.6 The client’s view 243

9.4.7 Post-conditions 243

9.4.8 Timeouts 244

9.4.9 The synchronisation invariant 245

9.5 Active objects 249

9.5.1 Active types 250

9.5.2 Execution patterns 250

9.5.3 Thread synchronisation 252

9.5.4 Finalisation 252

9.6 Summary 253

9.7 Bibliographic notes 254

9.8 References 254

Part Four System architecture 257

 10 Relationships between models 259

10.1 Why three models? 259

10.2 Analysis, specification, design and programming 260

10.3 Seamlessness 262

10.4 Scoping essential models 263

10.5 The software boundary 269

10.6 Logic in essential and specification models 272

10.7 Mapping specifications to implementations 273

10.7.1 Persistence 277

10.7.2 Other domains 278

10.7.3 Mechanisms 279

10.7.4 Conclusions 287

10.8 Transformation or invention? 288

10.9 Summary 289

10.10 Bibliographic notes 289

10.11 References 290

 11 Domains 291

11.1 Domains 291

11.1.1 Concept, interaction and infrastructure domains 292

 Contents xi

11.1.2 Some examples 293

11.2 Domains and model interpretations 297

11.3 Domains in the implementation model 298

11.3.1 Object instantiation 298

11.3.2 Identities and keys 301

11.3.3 Input events 302

11.3.4 Output events 304

11.3.5 State changes 305

11.3.6 State mirroring 307

11.3.7 Inter-domain sub-types 309

11.4 Domain dependencies revisited 310

11.5 Summary 311

11.6 Bibliographic notes 312

11.7 References 312

 12 Encapsulation and reuse 313

12.1 Encapsulation 313

12.1.1 Principles 314

12.1.2 Ownership and permission 314

12.1.3 Example 315

12.2 Viewpoint diagrams 318

12.2.1 Self-access 322

12.2.2 Sub-types and super-types 324

12.2.3 Constructing viewpoints 328

12.3 The viewpoint repository 329

12.3.1 Re-naming 329

12.4 Parameterised types 330

12.5 Summary 332

12.6 Bibliographic notes 332

12.7 References 332

Part Five The development process 335

 13 The development process 337

13.1 The process of software construction 337

13.2 Management process 338

13.2.1 Systematic development 338

13.2.2 Software development organisation 339

13.2.3 Recommended management process 343

13.3 Design process 347

13.3.1 Systematic design 347

13.3.2 Techniques 351

13.4 Tools 355

13.5 Completeness versus usefulness 356

xii Contents

13.6 Summary 358

13.7 Bibliographic notes 359

13.8 References 359

Appendix A Summary of notation 361

A.1 Type views 361

A.1.1 Basic notation 361

A.1.2 Associations 362

A.1.3 Special invariants 364

A.1.4 Constraints between associations 364

A.1.5 Specification models 365

A.1.6 Implementation models 365

A.2 Object diagrams and mechanisms 365

A.3 Statecharts 366

A.3.1 Basic notation 366

A.3.2 Essential models 367

A.3.3 Specification models 367

A.3.4 Implementation models 368

A.4 Viewpoints 369

A.5 Logic, sets and other mathematics 369

A.5.1 Definitions and declarations 369

A.5.2 Logic 370

A.5.3 Sets 370

A.5.4 Functions 371

A.5.5 Bags 371

A.5.6 Sequences 371

A.5.7 Sorted sequences 372

A.5.8 Objects 372

A.6 References 372

Appendix B Value types 373

B.1 Built-in types vs. user-defined types 373

B.2 Anatomy of a value type 373

B.3 Literals 374

B.4 Syntax 374

B.5 Boolean 375

B.5.1 Literals 375

B.5.2 Type specification 375

B.6 Number 376

B.6.1 Literals 376

B.6.2 Type specification 376

B.7 Integer 377

B.7.1 Literals 377

B.7.2 Type specification 377

 Contents xiii

B.8 Integer sub-ranges 377

B.9 String 378

B.9.1 Literals 378

B.9.2 Type specification 378

B.10 Character 378

B.10.1 Literals 378

B.10.2 Type specification 378

B.11 Symbol 378

B.11.1 Literals 378

B.11.2 Type specification 379

B.12 User-defined types 379

B.13 Other value type schemes 379

Appendix C Finding the objects 381

C.1 Textual analysis 381

C.2 What is a ‘good’ object? 382

C.3 CRC 382

C.4 Events 384

C.5 References 384

Index 385

 xv

Preface

This is a book about object-oriented analysis and design for software developers.

There are many such books, so why write another one? The answer is that we wish to

make some specific contributions to the philosophy and practice of object-oriented

software development which are significantly different from those that can be found in

any of the other available books.

This is not an introductory book1. It is for software practitioners with some

experience of using object-oriented languages and methods. We assume that the reader

understands the basic principles of object-orientation, especially encapsulation and

abstraction, classes and instances, polymorphism, and inheritance. We are aiming the

book at those software developers who are perhaps a little dissatisfied with the

informal interpretations of most published object-oriented analysis and design

methods, and who are looking for a more fully defined treatment.

This book does not aim to set out a complete method for software development. In

it we describe a range of techniques, notations, principles and procedures, and although

we offer some advice on their use, we leave to the reader the matter of arranging these

ideas. Indeed, we hope they will be useful to software developers using any kind of

object-oriented analysis or design method, by helping them to think more clearly about

what their descriptions and notations mean and when they can best be used.

Precision and formality

In this book we are rather stubborn about precision. Most books on object-oriented

analysis and design introduce some notations, explained informally by the use of

examples. Typically, for example, there is some notation to represent the concept ‘is-

a-part-of’, often called aggregation or containment. The reader is expected to

understand what this means: and indeed, we do understand what it means, in the

1For those readers who would like to read an introductory book on object-oriented software development we
recommend 'Object-Oriented Software', by Winblad, Edwards and King [Winbl90].

xvi Preface

intuitive sense that I understand that my arm is-a-part-of me, the wheel is-a-part-of the

car, and so forth. But what does it mean in software? After all, the ultimate purpose of

our activity is to build software.

This is the kind of question which must necessarily be answered by the builder of a

CASE (Computer Aided Software Engineering) tool based on a published notation. A

typical answer is to equate aggregation with the concept of an embedded object in the

C++ language. We are unhappy with this, on the grounds that the semantics of an

abstract modelling technique should not be decided by the detailed semantics of a

particular programming language. After all, if the implementation is to be done in

some other language, then these semantics are likely to be confusing and difficult to

implement.

Alternatively, the modeller might argue that the purpose of the object-oriented

analysis is to model the world, not to model the software. We have some sympathy

with this view, as you will see. But we should enquire about why the existence of an

intuitively understood is-a-part-of relationship in the world is relevant to our real

purpose, which is developing software. If it is relevant, then exactly how does it

translate into some property of the software; and if not, why is it being modelled at all?

This book provides clear and unambiguous answers to these questions.

There are two communities which at first hand seem to have remarkably little in

common, and yet are actually trying to solve the same problem. The first community is

the one already referred to, namely the methodology authors who invent informal

analysis and design notations. The second is the formal methods community, who use

the ideas of discrete mathematics: sets, relations, functions and logic, to describe the

abstract properties of software systems. Both communities are trying to address the

same overall problem of building models of software, in order to understand a problem

situation and specify possible solutions at a more abstract level of detail than the

program code.

One of our goals in writing this book is to help build some bridges between these

two communities. On the one hand, popular analysis and design notations provide

easily understandable diagrams, but lack the formal precision necessary for specifying

software systems completely and unambiguously. On the other hand, formal notations

such as Z [Abria80] or VDM [Jones86] provide the means for specifying software

systems accurately and completely, but are quite inaccessible to the vast majority of

today’s software practitioners whose experience of formal set theory is limited to the

little they did at school and have now forgotten. Faced with the need to learn new

complex notations and today’s job market, any practising software developer can be

forgiven for learning C++ rather than Z.

Our approach is to take the most popular existing object-oriented analysis and

design notations and give them a more formal interpretation. The first main notation

we have chosen is the Object Modelling Technique (OMT) notation, originally

introduced by Loomis, Shah and Rumbaugh [Loomi87] and subsequently popularised

in the book by James Rumbaugh et al. [Rumba91]. The second main notation is the

Statechart notation introduced by David Harel [Harel87] and also popularised in the

 Preface xvii

book by Rumbaugh et al. We also introduce a number of other notations, some

original and some derived from other authors, including Grady Booch [Booch91].

For formal descriptions we have adopted the basic notations of Z to describe sets

and their properties. But don’t be put off, because we use very little formal

mathematical notation. We do not include all of the ideas of Z, by any means. Neither

do we attempt to give our notations a proper formal semantics, or discuss proofs of

correctness; both of these would be proper for a book about a formal method, and this

is not one of those.

A completely different approach would have been to add object-oriented ideas to an

existing formal method. This kind of work has led to techniques such as Object-Z

[Carri89]. We believe our approach to be much more accessible, because all of the

formal material may be omitted while retaining a substantial part of the meaning of the

diagrams.

This book can be read by people with no experience of formal methods. Hopefully

it will teach even the complete beginner in discrete mathematics something about the

power of these methods. Most statements requiring significant mathematical

background have been relegated to footnotes and may safely be ignored by all but those

particularly intrigued by the mathematics.

Consistency and complexity

There are times when consistency with theory is not the ideal it seems. For example,

theoreticians will extol the virtues of programming languages with sound and

unbreakable type systems. This ideal has been challenged on many occasions by

Bertrand Meyer, inventor of the Eiffel language, who stresses the importance of a

useful type system over one that is merely correct with respect to some theory. We

have used this principle ourselves on occasion in this book, notably when considering

type-conformance. A theoretically driven definition of type-conformance might result

in rules so limiting that conformance would cease to be a useful tool for facilitating

reuse. In type-conformance as elsewhere, we don’t claim our rules are the paragon of

theoretical virtue – we merely claim them to be useful. Given this, formal proofs of the

soundness of these rules might be impossible and we don’t attempt them.

A superficial glance at some of the diagrams in this book might lead a casual reader

to the view that our notations are very complex – indeed, excessively complex. Not

surprisingly, we do not share that view. Some software systems are complex, and

require complex design representations. The secret to successful design is to be able to

deal with complexity at the right time; at each level of abstraction to have a design that

is, to use the phrase attributed to Einstein, as simple as possible and no simpler. The

simple fact is that the final representation of the design is likely to use a notation far

more complex, both in syntax and semantics, than that used in this book: a

programming language. The most widespread object-oriented programming language,

C++, is more complex than the notations we use in this book, but, we believe, offers

much less overall benefit to the software designer.

xviii Preface

Analysis, specification and implementation

We have puzzled for years about how to make clear sense of the word ‘analysis’ in the

context of software development. A typical distinction is the following: ‘analysis

describes what the system is to do; design describes how it will do it.’ The trouble with

this distinction is that it is entirely relative. One person’s what is another person’s

how. It seems that the only way to resolve this dilemma in practice is within the

context of a particular project: ‘within this project we shall call this activity analysis

and this activity design’.

Because of this dilemma we have tried to avoid the word ‘analysis’ as much as

possible. Instead we use the word ‘design’ in a wider sense than normal, to refer to all

the creative aspects of software system construction: hence the title of this book. We

discuss design from three distinct viewpoints: the viewpoint of an observer in the

world, the viewpoint of a software specifier, and the viewpoint of a software

implementor. These different viewpoints, each with their own modelling

interpretation, provide a framework in which each issue can be addressed at the correct

time.

Completeness and bureaucracy

Formal methods? Admittedly complex notations? Three distinct model

interpretations? Surely this is a recipe for overwhelming method bureaucracy?

Although we would robustly defend the need for each and every fine distinction in

our approach, we urge you not to turn our design techniques, which, after all, are

supposed to be an aid not an impediment, into a pointless grind, where ‘standards’ and

‘procedures’ force a relentless and fruitless pursuit of completeness at the expense of

inspiration and understanding. This book is bold enough to acknowledge software

design as a creative activity, carried out by inventive, imaginative people. Don’t stifle

creativity.

History, development and use

The ideas presented in this book are the result of the many years spent by the authors in

the construction of software systems, since 1985 almost exclusively using object-

oriented methods and technology. They form the basis of the Syntropy™ method,

pioneered by the authors and used by the consultants of Object Designers Limited and

their clients.

The material is intended for designing software to run on conventional platforms,

such as workstations, PCs, mainframes or embedded processors. We do not consider

other kinds of computational environment, such as special-purpose processors or

neural networks. Neither do we consider ‘rule-based’ software, whose execution is

based on the concept of logical inference.

 Preface xix

As we make clear in the text, we recognise that full application of the ideas

presented here will require the use of powerful tools. No such tools exist at the time of

writing, although we are certain of their feasibility. One of our major goals is to

mastermind the creation of these tools. Nevertheless, the principles underlying our

ideas and most of the notation for expressing them can be utilised today using the

simplest of computerised support – or even paper.

More than twenty years after the beginning of the methods revolution, most

software produced today is not consciously designed. While this state of affairs may

be satisfactory for simpler systems, the more complex software being produced now,

and the even more complex systems of tomorrow, will require precise and expressive

but flexible design techniques. We hope this book will make a valuable contribution to

the successful construction of complex software systems.

Using this book

We hope this book builds through its chapters a consistent and convincing story

concerning the way to think about software design. We urge you to read it from cover

to cover, but we understand that this will take some time and effort, given the level of

detail it contains.

Part One of this book, comprising chapter 1, sets out our philosophy. Part Two,

comprising chapters 2–5, describes techniques useful for modelling the world. Part

Three, comprising chapters 6–9, describes techniques useful for modelling software.

Part Four, comprising chapters 10–12, discusses various aspects of system architecture.

Part Five, comprising chapter 13, addresses some of the issues that arise when these

techniques are used practically to develop software.

The first time through we suggest you read chapters 1, 2, 4, 6, 7, 10, 11 and 13. This

route through the material will give you a complete impression of the techniques,

without delving into the finer details contained in the other chapters. Some of the

listed chapters end with material which should be skipped on a first reading; this

material is marked in the text.

For a brief introduction to our approach to software design and development, we

suggest you read just chapters 1 and 13.

Acknowledgements

This book has been written over several years. It represents not only the individual

work of the authors, but also the fruits of collaboration with a great many other people.

The starting-point for this work was the OODLES object-oriented design working

group, under the auspices of the British Computer Society’s OOPS (Object-Oriented

Programming and Systems) Specialist Group. OODLES met regularly during 1987,

and was the forum in which we discovered our common interests and began to

articulate our ideas. We thank the members of OODLES, particularly Bruce Anderson

xx Preface

and Chris Wallace, for setting us off on the right road. Bruce’s ideas about how people

can work together effectively have influenced us greatly, and Chris’s design examples

(notably his Petrol Station) have found their way into our training courses, this book,

and many other places.

In a wider context, OOPS has provided a focus since 1985 for the development of

the object-oriented methods community in the United Kingdom, by organising many

meetings and conferences in which ideas about object-oriented systems have been

presented and discussed. We thank all of the organisers and participants in these

events for providing a fertile environment for us to develop our ideas. Special thanks

are due to Ralph Hodgson for his enthusiasm and encouragement.

Since 1990 the full-time consultants of Object Designers Ltd., including Gary Birch,

Dave Cleal, Iain Cooke, David Harvey, Geoff Mohamed and Charles Weir, have taken

pains to understand, interpret, constructively criticise, enhance and ultimately use our

ideas. We thank them for their patience and their contribution to this book.

We also thank the students on our many training courses and workshops in object-

oriented analysis and design over several years, who have tried out our ideas and let us

know whenever they found them wanting.

We thank the following people who gave us useful feedback on drafts of this book:

John Cameron, Franco Civello, Ian Maung, Richard Mitchell, Meilir Page-Jones, Paul

Taylor, and the anonymous referees.

We owe our heartfelt thanks to our wives and children for their unfailing support

throughout the months we spent in front of our computers on this project.

References

[Abria80] J-R. Abrial, S. Schuman and B. Meyer. A specification language. On the Construction of

Programs, R. McNaughten and R. McKeag (eds.), Cambridge University Press, 1980.

[Booch91] G. Booch. Object Oriented Design With Applications, Benjamin/Cummings, Redwood City,

California, 1991.

[Carri89] D. Carrington, D. Duke, R. Duke, P. King, G. Rose and G. Smith. Object-Z: An object-

oriented extension to Z. FORTE89 – International Conference on Formal Description

Techniques, North-Holland, 1989.

[Harel87] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer

Programming 8:231–274, 1987.

[Jones86] C. Jones. Systematic Software Development Using VDM, Prentice-Hall International, Hemel

Hempstead, Hertfordshire, 1986.

[Loomi87] M.E.S. Loomis, A.V. Shah and J.E. Rumbaugh. An object modeling technique for

conceptual design. ECOOP’87 European Conference on Object-Oriented Programming,

Lecture Notes in Computer Science no. 276, Springer-Verlag, Berlin, 1987.

[Rumba91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented

Modeling and Design, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[Winbl90] A.L. Winblad, S.D. Edwards and D.R. King. Object-Oriented Software, Addison-Wesley,

Reading, Massachusetts, 1990.

Part One

Systems, models
and views

 3

CHAPTER 1

Systems, models and views

1.1 The ecology of software

Object technology holds out the promise of a breakthrough in software productivity.

But this breakthrough will not be achieved by continuing to develop software systems

in the same old ways using object-oriented programming languages instead of

procedural ones. Instead, the breakthrough will be a consequence of building software

systems by assembling them from pre-fabricated parts, rather than repeatedly starting

system development from scratch.

Many technical and organisational changes are needed to bring about this

revolution. These changes might be summarised as a change in the ecology of

software. The Oxford English Dictionary defines ecology as ‘a branch of biology

dealing with relationships of organisms to one another and to their surroundings’. In

software, we deal with the relationships of software components – objects – to each

other and to their surroundings. These relationships are the subject of this book.

Our own vision of object technology is heavily influenced by many years of

experience with the Smalltalk programming environment [Goldb83]. Developing

software in Smalltalk brings several insights whose importance extends well beyond

the boundaries of the Smalltalk system itself to shed new light on the overall software

development process. These are as follows:

• Software development takes place within an extensive, evolving environment of

multi-purpose computational components.

• Structures and relationships are vastly more important than algorithms and

functions.

• Every element has its proper place within the whole.

• New software is created as an extension of what already exists.

• The system is built from a small number of powerful and orthogonal concepts.

• The software development activity consists at least as much of learning as of

creating.

4 Systems, models and views

Influential as it is, Smalltalk is far from being an adequate solution to the overall

problem of software development. Although Smalltalk is an excellent way of building

some kinds of software, the true potential of object technology will not be achieved

through any particular programming language. It will be achieved through an

evolutionary process during which new insights into software development will be

translated into products and standards.

1.2 Modelling

This is a book about building models. The entire field of object methods is based on

the notion that ‘objects’ identified in the problem (analysis) have a meaningful place in

the solution (design). This book explores this notion in considerable detail, and shows

that although it contains many elements of truth, it should not be taken too literally.

As a first approximation, we can say that object-oriented methods focus on

structural, problem-directed approaches rather than functional, solution-directed

approaches. To understand this difference think about maps. If you want to find out

how to get from your house to the office you have two choices: ask someone for

directions or buy a map. We express directions functionally: ‘Go west for four miles,

turn right, proceed a further three miles and take the second left after the Post Office.’

Provided they are good directions and you follow them precisely they will solve your

immediate problem. But they are not a general, reusable solution and if you miss a

landmark you are probably lost. A map is a model based on real-world entities. It is

rich in contextual information; you don’t have to rely on spotting isolated landmarks,

they are all captured on the map. Experience tells us that trying to follow directions is

much easier if you have the map first! The richness of a map allows us to relate more

closely to the real-world situation being modelled. The map represents a structure

(roads, etc.) through which we navigate functionally.

Models can be very versatile. We can often use a well-designed object model to

answer questions about the situation being modelled which we had no plans to ask

when the model was built. Maps are an extreme example of this. Not only did the

cartographer not know (or care!) about the routes you want to follow when he drew the

map, he also allowed you to answer questions (‘how high is that hill over there?’)

which were completely outside your interest (‘what’s the quickest route to the office?’)

when you bought the map.

Another argument in favour of models is that they change less frequently than the

functions applied to them. Using our map analogy, the routes we follow are more

likely to change than the terrain over which those routes pass. We don’t always go

from A to B. When A is our home and B is the office, the A’s and B’s change

regularly for most people. Maps do become out of date but the lifetime of a map is

usually longer than our need to follow any particular route. (Interestingly, even an out-

of-date map is very useful.)

There have always been areas of software design where modelling is paramount.

One is database design. Databases are a clear example of structure pre-empting

 1.2 Modelling 5

function. One particular field of database design research, semantic data modelling,

has contributed greatly to the development of today’s object-oriented analysis and

design methods. Semantic database models were first devised as tools that allowed

high-level descriptions of data to be captured and visualised prior to their translation

into the less expressive database models, such as network, hierarchical and relational,

used for implementation. Although the relational model is very flexible, and does a

good job at separating the logical from the physical, its strongly record-oriented nature

limits its expressive power. Recently, semantic data models have been used as the

basis for actual databases, rather than as an intermediate description.

While the connection between object-oriented models and semantic data models is

strong, object-oriented models go much further, using the data/function merging

features of objects to describe the functions that navigate through the model as well as

its structure. Indeed, it is a primary tenet of object technology that the underlying

representation of objects is hidden behind a procedural interface. This is true for maps,

too, in this technological age: the real map is a collection of 1s and 0s on a magnetic

tape; the map we buy is but one possible visualisation of those data.

A word of caution here. You may be aware of the millions of dollars wasted on

attempts to build huge software ‘maps’ (actually, corporate data models) of all aspects

of a large company’s operations. Part of the problem here is the sheer scale of the

undertaking; the map is out of date before it’s finished. But there’s another problem.

These huge models often lack purpose. We’ve said that models are versatile but you

can only take that so far: road maps don’t generally include geological survey data. It’s

all a question of the richness of the information. If you try to solve too many problems

with a single model it becomes unmanageably large and cumbersome. Instead of a

single centralised model, the solution is to build many small intersecting models, each

under the control of people who understand a particular area of the business well.

Object technology can simplify the construction of such models, using techniques such

as those described in this book.

Simulation is another area of software design where modelling is crucial. In fact,

object technology has its roots in the Simula language, which was designed for

programming discrete-event simulations. In simulation, the software models a system

for the purpose of understanding the system itself. The model does not correspond in

real time to any portion of the world; instead it is used to ask ‘what if’ questions about

the simulated system. Closely related to simulations are systems which maintain an

artificial interactive reality. These systems allow users to create and interact with

information structures which correspond to concepts in their minds. Examples are

word-processors, graphical editors, mathematical processing systems, and music

composition systems.

Controlling a process is another important application of software models. In a

process such as a chemical plant or an aircraft, software responds to stimuli generated

within the process and produces appropriate responses to control the future

development of the process.

Many software systems combine aspects of all of these. For example, software for

supporting trading activities on financial markets is one of the most demanding

6 Systems, models and views

applications of object technology so far, where data structure, simulation and process

control are all vital aspects of the overall complexity to be modelled.

1.3 Software and the world

We have said that the entire field of object methods is based on the notion that

‘objects’ identified in the problem (analysis) have a meaningful place in the solution

(design). An important question is the extent to which the activities of analysis and

design can be merged. The simplistic approach is to say that object-oriented

development is a process requiring no transformations, beginning with the construction

of an object model and progressing seamlessly into object-oriented code. This

approach is based on two questionable principles: (1) the set of concepts found in

object-oriented programming is appropriate for building abstract models of reality, (2)

there is essentially no difference between an analysis model and an implementation

model.

While superficially appealing, this approach is seriously flawed. It should be clear

to anyone that models of the world are completely different from models of software.

The world does not consist of objects sending each other messages, and we would have

to be seriously mesmerised by object jargon to believe that it does. Nevertheless, it

may be worth considering the notion that it would be useful to model the world as

objects sending messages, as a precursor to building software. If we had such a model,

it would immediately constitute an executable simulation, and the transition to a useful

software system would be easy. Indeed, this is the promise often held out for objects.

Unfortunately, there are some fundamental problems with this view. The first is

predictability. Much as we might sometimes like it to be otherwise, the world is

unpredictable. If it were predictable we could determine all future behaviour by

reasoning about currently known facts. On the other hand, software is predictable

because its behaviour is determined by its code. Therefore, software cannot model the

world in general.

But the world is partially predictable. We can predict that the sun will rise, and

having risen will not rise again until after it has set. Perhaps we can still use objects

sending messages to model the predictable part of the world. The problem with this is

causality. Which object will send the sun the message asking it to rise? Is it to be the

earth, the laws of physics, the sun itself? There is no logical basis on which to make

this choice by considering just the situation itself.

What about the effects of the sunrise? We predict that in summer lots of birds will

start to sing around sunrise. Here we need to describe many things happening at once,

that is, concurrency. Does the sun send a message to all of the birds individually? If

so, in what order? Is there a problem of deadlock? These are silly questions, because

they are questions about software execution, not the sunrise. It seems that if we insist

on choosing ‘objects sending messages’ to model even the predictable part of the

world, we must ask nonsensical questions.

 1.3 Software and the world 7

So we see that applying the object-oriented programming concept of messages to

abstract specification leads to inflexibility and over-commitment. Object-oriented

programming languages (OOPLs) also have serious limitations in the important

modelling concepts of association and aggregation. We conclude that the set of

concepts found in OOPLs is inappropriate for building abstract models of reality.

In any case, software systems must also deal with interfaces, data storage and a host

of other low-level issues. Even if the process of translating an analysis object model

into equivalent classes in an OOPL were trivial (which it isn’t), only a small part of the

whole job would be completed.

The World The Software

Objects
Events

Objects
Messages

Fig 1.1 The world and the software

Because of these problems we use different sets of building blocks for modelling the

world and modelling the software, as illustrated in figure 1.1. To model the world we

use two basic concepts: objects and events. Objects model things and events model

occurrences. The things modelled by objects can be concrete or abstract, transient or

permanent, real or imaginary. The occurrences modelled by events are names for the

changes of state of the things being modelled.

All a thing needs in order to be modelled by an object is a name: bricks, Bessel

functions, ducks, dreams and unicorns can all be objects. In fact, we normally model

object types, rather than individual object instances. For example, let’s go back to the

sunrise. What are the facts? Given a location on the earth, there is one sun, which

alternately rises and sets. There is some number of birds. Given a bird, we cannot say

when it will start to sing, but we can definitely say that it won’t stop singing until after

it has started. We have identified:

• some object types: Location, Sun, Bird;

• some events: rise(Location, Sun); set(Location, Sun); startSinging(Bird);

stopSinging(Bird);

• some simple relationships between these object types and events.

8 Systems, models and views

To model software we also use two basic concepts: objects and messages. Software

objects refer to encapsulations of data with their associated operations, and messages

refer to invocations of these operations.

Concept
Model

signals and
measurements

Displays

Direct Input
Devices

Direct Output
Devices

Human-Computer Interaction

Reports

participation

observation

occurrences

messages

messages

User
Interface

Model

Input
Devices

Output
Devices

action

observation

updates

messages

messages

messages

messages, updates
& constraints

The World

Figure 1.2 Linking the world and software

Now let’s examine the relationship between the world and a software system,

illustrated in figure 1.2. Somewhere in the software is a concept model, a model in

software partially mimicking the behaviour of certain things in the world. This

software model must be updated whenever relevant changes occur in the world. The

speed and frequency of update is a design parameter. In any system there are two

possible paths for these updates. The occurrences may be detected and measured by

sensors or transducers, called direct input devices in the diagram, and notification

passed from these to the concept model. Alternatively, the occurrences may be

detected by human operators and fed to the concept model via a human–computer

interface. It may also be the job of the software to cause occurrences in the world.

These are either applied immediately by direct output devices, such as valves or relays,

or are passed to the human operator for action.

The diagram is only partially accurate for several reasons. Firstly, software is, of

course, itself part of the world – increasingly so, for in today’s world some very

common phenomena, such as money, have no recorded existence other than in

software. Hence it is not possible to design software on the basis that its existence will

leave the world unchanged; the introduction of a software system into the world

changes the world irrevocably and often unpredictably. Sometimes it is useful to

 1.3 Software and the world 9

pretend that the introduction of a software system will not change the world. On other

occasions such a pretence is unhelpful and best avoided.

Secondly, the diagram distinguishes between those humans whose purpose is to act

explicitly as operators for the software system, thereby appearing inside the human–

computer interaction box, and those who are simply part of the world and whose

actions are detected by direct measurement. Making this distinction clearly requires us

to know something about the intentions of the people concerned. Nevertheless in

many cases the distinction is perfectly clear. For example, a system controlling the

sprinklers in a building will have sensors to detect a fire, a concept model representing

the physical layout of the building, valves to turn the sprinklers on in the right areas,

and a user interface to help fire-fighters find out where the fire is and other relevant

parameters. In this system the occupants of the building are in the world, whereas the

fire-fighters are part of the human–computer interaction system.

Lastly, it is often possible to re-interpret the diagram simply by a shift of

perspective. Consider a word-processing system. What is the concept model? Does it

include:

• the meaning of the words being written?

• the letters, words and paragraphs, considered as objects in their own right?

• the visual appearance of the letters, words and paragraphs, taking into account

fonts, styles, etc.?

• the interaction properties of the letters, words and paragraphs?

• the way the word processor manages windows on the display?

The first interpretation may seem unlikely, until we consider the possibility of syntax-

directed editing of formal texts such as computer programs or specifications. But all of

the rest seem quite plausible. Where shall we draw the line?

a situation in the world
a model of the
situation

concept domain

concept domain

user-interface

communications object
management

a design for a software system

Figure 1.3 Domains

10 Systems, models and views

The answer to this question lies in a discussion of domains. Domains are separately

considered sub-systems. Some domains are concept domains, whose primary role is to

mimic the world, whereas other domains are interaction domains, whose primary role

is to provide the mechanisms for keeping the concept domains and the world in step.

Figure 1.3 illustrates how a model of a situation in the world – a concept domain – is

embedded in a number of typical interaction domains acting as intermediaries between

the concept domain and its environment. The diagram shows interaction domains for

object management, communications, and user-interface. We discuss domains further

in chapter 11. For now, the discussion will assume we are focusing on one domain,

and the general assumption will be that it is a concept domain. Nevertheless, all of the

modelling techniques we propose can be applied to any domain, although some may be

more appropriate than others in particular circumstances.

In this book we present three kinds of object-oriented model. The first kind, which

we call the essential model, considers the model to be a description of some real or

imaginary situation, which may or may not contain software. We use the word

situation rather than system because ‘system’ has so many possible meanings including

the software we may be trying to build, and rather than world to emphasise that we are

considering purposeful systems situated in a context rather than trying to describe all of

some supposedly objective reality. The purpose of building the essential model is to

understand and establish the facts about this situation. The building blocks which we

use to build essential models are objects (actually object types) and events (actually

event types). An essential model is built by drawing annotated diagrams, and

interpreted as descriptions of sets, functions and sequences with meanings in the

situation being described.

In the second kind of model, called the specification model, we are concerned with

specifying software. To create a specification model it is necessary to establish which

parts of the overall situation will be implemented in software. In some cases this might

be a large part of the situation, whereas in others it might not be a part at all. The

activity of specifying exactly what is to be implemented in software is quite different

from the activity of establishing the facts about the overall situation; however both of

these activities would conventionally fall under the heading of ‘analysis’. Like

essential models, specification models deal with objects and events and are built by

drawing annotated diagrams. They are interpreted as a description of the abstract

stimulus–response behaviour of the software. The specification model describes

software at a high level of abstraction, and in particular says nothing about internal

sequencing or concurrency. An important part of building a specification model is the

allocation among object types of responsibility for aspects of software behaviour.

The third kind of model, the implementation model, is concerned with establishing

patterns of control flow within the software. In this model we take into account the

fact that computer programs have a limited number of well-defined flows of control,

which execute at a finite speed. The building blocks for implementation models are

objects and messages. Object interactions are described as messages sent from one

object to another, and the implementation model describes message sequencing and

concurrency control. Annotated diagrams are used again, although in the

 1.3 Software and the world 11

implementation model our repertoire of diagrams is richer than for the other kinds of

model.

Figure 1.4 summarises the three kinds of model. It illustrates how essential models

are built to understand the world, whereas specification and implementation models are

built in order to describe the behaviour of software. It also shows a systematic

correspondence between the essential model and the concept domain part of the

software models: this is the same correspondence as is illustrated in figure 1.3.

Note that the specification model stands between the essential and implementation

models, in the sense that it uses the same concepts as the essential model but has the

same intention – the description of software behaviour – as the implementation model.

For object-oriented methods to offer significant advantages there must be

consistency and systematic correspondence between these three models of a system.

We do not, however, expect the three models to be identical; indeed, because the

formal interpretations of the three models are different, this is not possible. But we

certainly expect a systematic correspondence between the essential model and the

concept domain part of the specification and implementation models. Exactly what

kinds of correspondence we may expect will emerge as we look at the models in detail.

The Essential model The Specification and
Implementation models

Systematic
correspondence

Model of the world

The World The Software

Models of software

Built to specify
Interpreted as descriptions
of behaviour

Built to understand
Interpreted as
statements of fact

Figure 1.4 Relationships between models

12 Systems, models and views

1.4 Essential models

The purpose of an essential model1 is to understand a situation, real or imaginary. The

building-blocks of an essential model are objects and events, and its interpretation is a

set of facts. Chapters 2–5 describe in detail the notations for building essential models,

and what kinds of facts can be expressed using them.

Building an essential model may be a matter of establishing the facts about a pre-

existing situation, or it may involve designing the facts about a situation yet to be

constructed. For example, we might be designing a new video game, in which alien

monsters compete for advantage in a world full of weird and wonderful dangers. This

imaginary, designed world contains facts just as much as does a payroll system, and it

is equally appropriate to build essential models of it.

The facts about a situation which are described by an essential model are as follows:

• the possible states that the situation can be in;

• the set of events which cause changes between one state and another; and

• the possible sequences of events which can occur.

The states of a situation are described in terms of objects, which have properties, and

their relationships. Any particular state consists of a set of objects, each with specific

properties, participating in particular relationships.

An important activity when building an essential model is to decide what to include.

In any situation there may be an infinity of phenomena which can be perceived and

which might be included in an essential model. The way to decide is to refer to the

purpose for which the model is to be built, and hence select what is relevant.

Events in an essential model are simultaneously observable everywhere. They may

carry information, in the form of object identities and other values. All events are

instantaneous, regardless of how long they might actually take in the world: either an

event has happened or it hasn’t; events are never in the middle of happening. If we

need to model overlapping activities, then we model them using distinct events to mark

where they start and where they finish. If we need to model events occurring at

particular times, then we model the passage of time with events.

The essential model does not describe cause and effect relationships. We do not

wish to consider what causes what in the world, which we think is an infinitely

complex, mysterious and non-deterministic place. However, we do notice that some

sequences of events do occur in the world, whereas others don’t. For example, a

switch is either off or on, and the events on and off invariably alternate. Two on events

simply never happen without an intervening off event. In the essential model, what we

leave out is just as important as what we include.

An essential model acts as an external observer of a modelled situation. Events

‘leak out’ from the situation being observed and are detected by the essential model,

1The terminology 'essential model' has been used elsewhere, notably in the work of McMenamin and Palmer
[McMen84]. Our usage is different, although the intention is somewhat similar.

 1.4 Essential models 13

which tracks the changes of state of the observed situation. The essential model states

which sequences of events can happen, and which cannot. There are no ‘run-time

errors’ in a correct essential model: if an event occurs which is not allowed by the

model, then the model does not describe the situation properly.

An essential model, once built, could in principle be executed, and would act as a

kind of simulation of the modelled situation2. At any point it would expect one of a

certain set of events, and would need to be told which of these events had occurred; it

would then shift to a new state, with another set of possible events.

Essential modelling techniques are applicable to a wide range of situations,

regardless of whether software is to be written. All that is necessary for these

techniques to be useful is that the modelled situation can be usefully described in terms

of discrete states and events. For example, the techniques could be used to describe the

rules of a game or the operation of a business enterprise.

Most often, however, we want to build a software system. To do this it is necessary

to define the boundary between the software and its environment. Many software

development methods assume that the environment and the boundary for a software

system are given as known facts at the beginning of development. In our experience,

although this is sometimes the case, often it is not. We can identify three general

categories of system on the basis of what is known about the software boundary and

environment at the outset, as follows:

1. The environment is given and the software boundary is implicit in the definition

of what the overall system is to do.

 This category of systems, which we sometimes call ‘hard’ systems, consists of

those where the performance of the system depends completely upon the

software. An extreme example is a video game. Here there is no ambiguity

about the role of the software; the software is the entire system. Another

example would be a guided missile, where the purpose of the software is to get

the missile to the target by controlling the engine, navigation and other functions.

2. The environment is given, but the software boundary is a matter of choice.

 This category of systems, consisting of systems which we call ‘semi-hard’, are

those where the introduction of software does not change the behaviour of the

overall system, but the role of the software within the overall system can be

chosen depending upon non-technical factors such as cost, ergonomics or

political issues. For example, we might automate some aspect of the overall

operation of a business – say payroll processing – without appreciable impact on

the operation of the business as a whole.

2We believe that a tool which executes essential models in this way would be very useful for validating the model
for people with experience of the subject domain who don’t understand the diagrammatic and mathematical
formalisms.

14 Systems, models and views

3. The introduction of the software will change the environment in unpredictable

ways.

 This third category of systems, whose members we call ‘soft’, are those where

introducing software will have consequences which cannot be predicted in

advance of its introduction. An electronic mail system is an example.

Introducing an electronic mail system into an organisation can have far-reaching

consequences on the organisation, such as the way meetings and diaries are

organised, the amount of time individuals spend processing their mail, or even

the physical location in which individuals carry out their work. Sooner or later

the software will need to be changed to reflect and incorporate the changes it has

precipitated in the organisation.

These distinctions are relative. One person’s hard system is another person’s soft

system – introducing video games into an organisation of undisciplined staff might

wreak havoc on its productivity. Much of the history of information technology

consists of the introduction of computer systems into organisations on a piecemeal

basis, on the assumption that the software does not affect the basic structure of the

organisation. However, it often does, and more recently there have been many

initiatives to try and redress the balance, by applying techniques for corporate

information modelling and business process re-engineering [Hamme93].

It is important not to under-estimate the changes which introducing software can

make to a situation. Traditional methods of systems development, which analyse and

automate existing data-flows and data stores, have resulted in software systems which

perpetuate organisational practices established when the business was run using paper.

Many organisations are having to rebuild their information systems around models

which represent the essence of the business, rather than models which simply

implement outmoded business practices. Some have tried to build complete,

centralised models of everything that happens in the business. This is often a mistake,

for reasons pointed out earlier. This book is not about information systems

methodology or business process re-engineering; nevertheless we believe the

modelling distinctions made here are necessary (although not sufficient) for thinking

clearly about those subjects.

1.5 Specification models

The purpose of a specification model is to state what the software will do. The

specification model describes the states that the software can be in, and the way that it

responds to stimuli (events) by changing state and by generating responses (also

events).

 1.5 Specification models 15

Like the essential model, the specification model is built in terms of events and

states, and the formalisms we use are extremely similar for both models. The main

practical differences are as follows:

• the specification model can generate events itself;

• a specification model can leave the response to an event undefined.

Although the diagrams we draw for the specification model are very similar to those

for the essential model, the theoretical interpretation is significantly different. One

important difference is the concept of sub-type, often informally called an ‘is-a’

relationship. Chapter 6 provides a detailed discussion of the notations used for

specification modelling and their interpretation.

A specification model describes software at a level of abstraction which ignores

implementation issues such as control flow, concurrency, user-interface details,

persistence and so on. Any practical implementation will have many intermediate

states of execution between the states described by the specification model, because of

the limitations of speed and space imposed by computer hardware. However, the

specification should describe the implementation accurately, in the sense that it would

be possible in principle to produce a formal proof that the implementation implements

the specification correctly. We do not provide any apparatus for doing such proofs in

this book; indeed, in the current state of the art, such proofs are rarely a practical

proposition for software systems of any significant size or complexity.

To create a specification model we must draw a boundary between the software and

the rest of the situation, which we will call the environment. To design a specification

model requires considerable thought about how the software and its environment will

interact. In general, it may require the design of a complete user-interface, together

with the design of the tasks which the operator of that interface will need to undertake.

Often this design will involve prototyping the user-interface, and other disciplines such

as ergonomics and graphic art will be brought into play.

A proper discussion of user-interface design is well outside the scope of this book,

but we can make some general comments about the considerations which come into

play when designing interactions.

Firstly, in determining the boundary and responsibilities of the software we must

identify all of the stimuli and responses. Sometimes these are simply given, and

sometimes we identify them by first building an essential model. If we have an

essential model defining a set of events, we must decide for each event whether it is

detected by the software, generated by the software or irrelevant to the operation of the

software. This question provides a systematic way of thinking about the software

boundary based upon the essential model.

The second important principle to use when designing the software boundary is to

consider untimely occurrences. For example, an essential model might declare that the

event of withdrawing money from an account cannot happen when the account is

overdrawn by more than a certain amount. However, in an implementation, somebody

might well attempt to withdraw the money. Attempting to withdraw the money is

16 Systems, models and views

different from succeeding in withdrawing it, and the specification model could make

this distinction precise by specifying a detected event representing an attempt to

withdraw the money, and a generated event representing the actual withdrawal.

The third principle we use is to think of the specification model as a ‘transparent

box’, that is, to assume that the state of the model can be observed by its users at any

time, without the need for explicit events to carry information from the software to the

situation. The decision about which information should be transferred from the

software to its environment explicitly by means of events, or implicitly by observing

the state, is not an absolute one; it depends upon assumptions made in the design of the

user-interface such as the expectations of the users of the software. For example, in an

air traffic control system, will operators be notified by an audible alarm when an

aircraft enters their zone (a generated event) or will they simply notice it on the screen

(an act of observation)? In any case, making the software state visible in an

implementation can be a complicated exercise, requiring mechanisms such as

dependencies, triggers and display updates. All of this can be ignored in the

specification model for a concept domain, although it may be crucial in a specification

model for an interaction domain.

As well as providing an abstract specification of the overall behaviour of the

software, a specification model establishes which object types have responsibility for

which aspects of this behaviour. The vision of building software from pre-fabricated

parts applies just as much to specifications as it does to implementations. Hence

specification model object types should provide robust abstractions which may be

reused in different models (although for performance reasons allocation of

responsibilities may change when moving from a specification model to a particular

implementation).

1.6 Implementation models

Implementation models describe the objects in the executing software and how they

communicate. The primary building blocks for the implementation model are objects,

which have types, states and properties, and communicate by sending messages. The

implementation model is semantically close to the execution model of popular object-

oriented programming languages, such as Smalltalk, C++ and Eiffel. Particular

languages have particular quirks which may filter up through the design to be

represented explicitly in the implementation model. Indeed, the pragmatics of the

implementation language sometimes impact the entire development process in quite

profound ways, and affect the essential and specification models, too.

However, it is in the implementation model that the effects of the language are most

likely to be seen, for example:

• where class libraries already exist;

• where there are particular subtleties about the semantics of inheritance; or

 1.6 Implementation models 17

• where choices between object and value types are predetermined by efficiency

considerations.

In this book we approach the implementation model from a language-independent

viewpoint. One of the most important strengths of object technology is its ability to

integrate heterogeneous systems. In the future, any focus on a particular programming

language will become less and less relevant as systems start to be constructed from

parts written in many different programming languages, communicating via a

language-independent substrate such as the Object Management Group’s Common

Object Request Broker Architecture [CORBA92].

Traditional approaches to software development make a strong distinction between

data and processing. This distinction lies at the heart of the design of programming

languages such as COBOL, C and Pascal, and also at the heart of traditional data-

processing architectures which separate the shared database from the programs which

access it. With the advent of object technology this traditional distinction is beginning

to break down, to be replaced by the distinction between the insides and the outsides of

objects. Objects encapsulate data together with the operations that act upon those data.

Objects are only accessed via operations, which provide services to the object’s clients.

A single object can be thought of as a stimulus–response mechanism, where a stimulus

is a message causing the invocation of one of the object’s operations. From the point

of view of the message sender, the response is a value returned from the operation.

From a more global perspective, the response includes a set of messages sent by the

object to others, each of which causes its own response.

The distinction between the insides and outsides of objects is captured by the egg

model (figure 1.5). If an object is an egg, then the yolk of the egg represents the

object’s data. Completely surrounding the yolk is the white, representing the object’s

operations. On the very outside is the shell, representing the interface that the object

offers the world. The arrows denote references3 from one object to another, which

always end at the shell, indicating that the shell is the only visible part of the egg. The

white and yolk are inaccessible to an observer outside the egg unless the egg is broken

open – which would be called a ‘violation of encapsulation’ in object-oriented terms.

In an implementation model, external stimuli are converted into messages which are

sent from point to point between objects, eventually being converted back into

responses in the external world. In slightly more detail we expect an event to be

detected by a hardware device first, then handled by some interaction domain objects

which will send appropriate messages to concept domain objects. On the output side, a

messages is sent from a concept domain object to an interaction domain object, which

co-operates with other interaction domain objects, eventually manipulating hardware

devices which cause occurrences to be manifested in the external world.

3These arrows represent inter-object references, not message-sending: arrows representing message-sending would
go from the white of one egg (its methods) to the shell of another.

18 Systems, models and views

Figure 1.5 Objects as eggs

Object technology is often described as encouraging reuse. At the level of program

code this ability is a direct consequence of pursuing the distinction between insides and

outsides. The inside of a client object contains assumptions about the outside of the

supplier objects it uses. Any supplier which offers an outside conforming to these

expectations is a valid partner in this relationship. Building software systems by

assembling pre-fabricated components is made possible by software technology which

allows many different actual suppliers (actual outsides) to conform to a single expected

outside: a property often called polymorphism. This matching between suppliers and

clients may occur either at system assembly time (typically when modules are

compiled together), or at run-time, that is, when several different suppliers with the

same interface co-exist in an executing system.

Bertrand Meyer has emphasised this idea using the phrase design by contract

[Meyer92]. Each relationship of usage between two objects has a supplier and client.

The supplier offers the client a contract, as illustrated in figure 1.6. In Meyer’s

language, Eiffel, such a contract is specified in terms of pre-conditions, which the

client must satisfy before calling an operation, and post-conditions, which the server

promises to satisfy afterwards. We follow these ideas in the implementation model,

using annotated diagrams to express the interfaces instead of a programming language.

The idea of design by contract also applies in a modified form to the specification

model, as we will see in chapter 6.

One of the crucial issues addressed in the implementation model is concurrency. In

the essential and specification models speed of execution is not an issue: all responses

are simply defined to be sufficiently quick. However, in a software system it is often

the case that a rapid response is required to a stimulus, even though the software is in

the process of calculating the response to an earlier, but less urgent, stimulus. User-

interface feedback is an obvious example of this requirement. Simply serialising all

inputs to the software is not often an adequate solution, and in general there is a need

for several concurrent processes, whether on the same or different physical processors.

As soon as there are concurrent processes, there is a need to manage concurrent

access to objects. As we will see in chapter 9, concurrent processes cannot be allowed

 1.7 Views and notations 19

to access objects in an arbitrary way, because the semantics of shared objects cannot be

guaranteed without a coherent scheme for making competing processes co-operate with

each other. Also, unfortunately, the basic principle of design by contract is violated as

soon as concurrency is introduced. The implementation model extensions described in

chapter 9 contains process synchronisation constructs which allow the principle of

design by contract to be re-introduced, although in a modified form.

Client Supplier

Contract

Figure 1.6 Design by contract

1.7 Views and notations

Each of the three models is expressed in a series of views, where each view shows a

different aspect of the model. Some of these views are textual, some are graphical.

Some have a formal interpretation, some are informal.

The two most important views, applicable to every model are:

• type view – a view showing the types of object in the model, their properties and

relationships;

• state view – a view showing how the state of objects changes over time as a

result of events.

Both these views are based on existing notations: OMT’s object modelling notation

[Rumba91] for type views and Harel Statecharts [Harel87] for state views. However,

we give these diagrams precise meanings expressed in terms of sets and functions, so

that they may be interpreted unambiguously, and to ease the construction of tools.

As described in later chapters, the type view consists of rectangles representing

types, containing expressions describing properties and invariants, with annotated lines

20 Systems, models and views

between them describing relationships. Many object-oriented design methods have

notations consisting of bubbles and lines, and what mainly differentiates the methods is

the shape of the bubbles. Many methods simply say that bubbles describe classes, and

attributes describe instance variables (data members, in C++ terminology). Indeed, this

is a tempting interpretation, because CASE manufacturers can easily generate code

templates, one class per bubble, and claim that they have a code generator; it also

greatly simplifies the task of producing diagrams from code – a feature which can be

readily marketed as ‘reverse engineering’. We take the position that this simplistic

interpretation is inappropriate, certainly for essential and specification models. The

main reason for our reluctance to equate bubbles and classes is that the semantics of

constructs such as inheritance or pointers are language-dependent, and by equating

bubbles and classes we would make the semantics of our notations dependent on a

particular programming language. This may arguably be appropriate for implementa-

tion design, but is certainly inappropriate for the more abstract structures represented

by essential and specification models.

We much prefer to define our notations in terms of abstract sets and functions, so

that they can be used to reason about models in a language-independent way. Hence

we choose to call our rectangles types, rather than classes, and the things inside them

properties, rather than attributes. How they are implemented in a particular OO or non-

OO programming language is an important aspect of the overall design; it is often

dependent on project-specific issues, and in general the mapping from diagrams to

code may be different for each new project. Frequently, another important

consideration is the mapping from objects to database constructs, such as relational

tables. How to do these mappings in detail is outside the scope of this book.

In addition we define how formal, mathematical, specification can be used to

enhance these views. We do not believe formal specification should be applied

everywhere in every case but we think it a useful technique that every designer should

have available. We have tried to make the formal specification an adjunct to graphical

notations that already have a formal meaning. Our mathematical notation is based on

the formal specification language Z [Words92].

The third kind of view shown in figure 1.7 is directly applicable only to

implementation models. It shows how software objects interact by message-passing.

For this view we use the concept of scenario-based mechanisms, as promoted by Booch

[Booch91], drawn using the object diagrams found in [Rumba91]. Being based on

examples, this view cannot realistically be made complete or formal. Statecharts in the

implementation model are given different semantics to allow the specification of

message interaction. Thus they provide the formalism missing from mechanisms.

The most important view is the type view, closely followed by mechanisms. If time

and effort are limited, these are the ones that we recommend producing. Statecharts are

more difficult to understand and to get right, and tend to be less familiar, especially to

programmers. However, statecharts are necessary for completeness.

 1.9 Method 21

Type View

State View

Mechanisms

Figure 1.7 Views

1.8 Encapsulated software components

We started to discuss reuse in the introduction to the implementation model, and

introduced the idea of design by contract, which enables reuse of executable software

components. But the need for reuse goes well beyond executable software. We would

like to be able to reuse elements from our essential and specification models, too.

We cannot address this desire in any of our models without being able to construct

partial models, and to define formally systematic ways of putting them together to

produce composite models. Our basic vision for this is set out in chapter 12, where we

discuss how to define encapsulated software components which may be stored in a

repository for reuse.

Such a vision cannot be realised without support from computer-based design tools,

which do not exist at the time of writing in 1994, although they form a clear part of our

plan for the future of our ideas.

1.9 Method

This book introduces a number of ideas and techniques which we have found helpful in

software projects. But we do not by any means recommend that all the techniques be

used for all projects. Indeed, without CASE tools in advance of anything available

today, this would be an exceptionally time-consuming and bureaucratic task for all

except the simplest projects. Which techniques are most appropriate depends upon the

starting-point for the project, and which part of the project is being considered.

22 Systems, models and views

Software developments generally fall into one of two categories, depending upon

whether functional requirements for the project are known in advance.

For some software projects the starting-point is a set of functional requirements, that

is, a concrete specification in some form of what the software is to do. Usually this

boils down to a description of desired stimulus–response behaviour. Typically,

software for use in embedded systems falls into this category. In such projects, the

boundary of the software has already been defined, often through some intrinsic

characteristic of the wider system into which this particular component is to fit:

conformance to a published standard, for example.

For such projects, a specification model is a natural starting-point. An essential

model can be built if required to provide a description of the assumptions made by the

software about its environment. The essential and specification models will typically

be very similar. In such projects it is important to remember that functional

requirements tend to be much more volatile than the essential subject-matter which

they are dealing with – after all, this is a basic principle of object-oriented software.

Hence considerable emphasis should be placed on designing a robust model which will

survive changes in the functional requirements over time.

Other software projects start from more abstract non-functional requirements. Often

this is because functional requirements are difficult to establish without building

prototypes and/or models in order to obtain informed input from end users. In these

projects an essential model is likely to be the appropriate place to start. The process of

constructing an essential model gives insight into the problem, delimits the relevant

subject-matter and provides a systematic way of making decisions about the software

boundary.

Above all, we don’t believe that any prescriptive method is suitable for all software

projects. Every software development organisation needs to develop its own methods

and processes which are suitable for the kinds of software it builds, the staff it

employs, the equipment it uses and many other factors. Sometimes the most

appropriate techniques are entirely outside the scope of this book (e.g. the use of

blackboard architectures, constraint-satisfaction techniques, neural networks, attributed

grammars, etc.). We do believe that there are some generally applicable disciplines for

managing software development, which we return to in chapter 13.

1.10 Summary

• Object technology promises a revolution in software productivity through

changes in the ecology of software.

• This book is about building models.

• Modelling the world and modelling software are fundamentally different.

• Within a software system is a concept model which mimics the behaviour of the

software’s environment.

• A software system is sub-divided into domains.

 1.12 References 23

• The concept domain describes the concept model, and interaction domains keep

the concept domain and the world in step.

• We introduce three kinds of model:

 essential models, describing situations in the world;

 specification models, specifying software in the abstract;

 implementation models, describing the details of software implementation.

• There is a systematic correspondence between the three kinds of model.

• Essential models describe states of the world in terms of object configurations,

events which cause state changes, and the possible sequences of those events.

• Specification models describe the stimulus–response behaviour of software in

terms of object configurations, detected stimuli and generated responses.

Specification models assume infinitely fast processing and infinite execution

resources.

• Implementation models describe the details of software execution in terms of

collections of objects communicating by sending messages. Implementation

models assume finite processing speed and limited execution resources.

• Polymorphism is the ability for many different kinds of object to act as servers

for a given client.

• The relationship between clients and servers is called a contract.

• Design by contract promotes software reuse.

• Each model is expressed using several different views.

• Type views and state views are applicable to every model.

• The meaning of type views and state views is given in terms of abstract sets and

functions.

• Additional views are used in the implementation model, particularly

mechanisms.

• Reuse requires a discipline of encapsulated software components.

• The techniques in this book are not intended to be a prescriptive method for

software development.

1.11 Bibliographic notes

Recommended books on user-interface design include [Schnei87] and [Laure90].

1.12 References

[Booch91] G. Booch. Object Oriented Design With Applications, Benjamin/Cummings, Redwood City,

California, 1991.

[CORBA92] Common Object Request Broker Architecture and Specification, Object Management

Group, Framingham, Massachusetts, 1992.

[Goldb83] A. Goldberg and D. Robson. Smalltalk-80: the Language and its Implementation, Addison-

Wesley, Reading, Massachusetts, 1983.

24 Systems, models and views

[Hamme93] M. Hammer and J. Champy. Re-engineering the Corporation: a manifesto for business

revolution, Nicholas Brealey, London, 1993.

[Harel87] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer

Programming 8:231–274, 1987.

[Laure90] B. Laurel (ed.). The Art of Human–Computer Interface Design, Addison-Wesley, Reading,

Massachusetts, 1990.

[McMen84] S. McMenamin and J. Palmer. Essential Systems Analysis, Yourdon Press, New York,

1984.

[Meyer88] B. Meyer. Object-oriented Software Construction, Prentice-Hall, Hemel Hempstead,

Hertfordshire, 1988.

[Meyer92] B. Meyer. Applying ‘Design by Contract’, IEEE Computer, 25(10): 40–51, 1992.

[Rumba91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented

Modeling and Design, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[Shnei87] B. Shneiderman. Designing the User Interface: strategies for effective human–computer

interaction, Addison-Wesley, Reading, Massachusetts, 1987.

[Words92] J. Wordsworth. Software Development with Z, Addison-Wesley, Wokingham, Berkshire,

1992.

Part Two

Modelling the world

 29

CHAPTER 2

Describing structure:
the basics

2.1 Objects, values and events

The world is a very complicated place. As software developers, we need to produce

models of it and make them come to life. Fortunately, we only need to construct small

and partial models of the world; models just rich enough to meet our purpose. To

reflect this limited ambition, we prefer to talk about modelling situations in the world.

A situation is a set of things and occurrences which describes some kind of activity in

the world: situations have a purpose. Two very similar sets of things and occurrences

may be part of totally different situations, with very different purposes, so it is

important to understand the purpose for which a model is being constructed. We

would contrast this goal of modelling situations (having a purpose) with that of

building generic models, such as the attempts to construct corporate-wide data models,

where the ultimate purpose is poorly understood.

Our stated goal is to use the concepts of object technology to describe situations in

the world. Which concepts are relevant and how should we apply them? For the

purposes of modelling, we consider the world to consist of objects, values and events.

Objects have identity: one object can always be distinguished from another. In this

sense, object identity is rather like a key, a concept familiar to anyone who uses a

database, but even objects with no obvious key have identity. Imagine building a

model of a bottling plant, where bottles move along a production line being filled,

capped and labelled. Sensors on the line detect the presence of a bottle and monitor its

progress. We might wish to model each bottle as an object that comes into existence

(in our model) when first detected by a sensor. We can then tie-up subsequent sensor

detections with a particular bottle (because of a fixed-order constraint) even though the

bottles appear identical. Objects also have observable properties, such as the weight

and size of the bottle. An observable property does not equate to a data attribute; we

are not attempting to model the world in data. It is just something that can be observed

in some way. A bottle has a volume. It is unnecessary and not useful to say whether

that property is ‘stored’ or ‘computed’. On the other hand, we may wish to state a

mathematical relationship which always holds between the bottle’s size and its volume.

30 Describing structure: the basics

Such relationships are called logical invariants and we will discuss them further later

in this chapter. The properties of objects may be other objects: a useful property of a

bottle might be the company which made it. Properties that are other objects or

collections of objects are called associations. The properties of objects may change

over time, and this mutability is an important difference between objects and values.

Values don’t change. The best examples of values are the numbers. There is no

mathematical operation that allows the integer 3 to be mutated into the integer 4. It is

certainly possible to take a bottle object and change its value property describing the

amount of fluid in it. But the number has not been mutated: one number has been

replaced by another. By contrast, the state of the bottle object has changed. Since

values are immutable, they have no identity separate from their value; we can have no

concept of replicating a value to obtain another copy of it.

Except for things like numbers, the distinction between objects and values is largely

one of convenience. The designer must choose which things will be objects and which

values. A disadvantage of values is that there can be no notion of sharing them, and

hence no notion of navigating from them to find all objects holding a particular value.

Values simplify the designer’s job because pre-defined value types, such as strings, can

frequently be used to represent problem-domain concepts. For example, we might

decide to use a number to represent the speed property of a car object, rather than

design a new kind of value type for speed; defining a new value type for speed would

bring with it a consequential need to define an algebra for manipulating speeds. On the

other hand, the algebra for numbers might not exactly fit our understanding of speeds –

what does it mean to multiply two speeds together? The choice of value types is a

trade-off between convenience and accuracy.

Events bring new objects into existence (within our model), cause objects in our

model to leave it, and change the properties of existing objects. Events have no

duration, they have either not yet happened or have already happened. We will discuss

events in detail in chapter 4.

2.2 Types

In this chapter we wish to consider how to describe the structure of a model of a

situation; in chapter 4 we will consider how the model is affected by events. We could

depict our model using just the concepts already introduced.

Figure 2.1 depicts three objects, two bottles and one manufacturer, and their

associations. Describing the model like this is perfectly correct but rather limiting. It

doesn’t say anything about situations where there are three bottles, or one bottle or two

manufacturers. We need a more generic description of the model, which we can only

obtain by generalising. We need a concept which will allow us to describe all bottles

in the situation at once, a concept that supports the description of the properties they all

share. We call this concept object type. An object type represents a particular kind of

object; it is analogous to the concept of entity type in data modelling.

 2.2 Types 31

In line with emerging industrial practice, we use the phrase object type for this

concept in preference to the phrase object class. The idea of class is closely linked,

through its use in object-oriented programming languages, with the description of

implementation details of software objects. This idea is clearly inappropriate when

considering objects in the world. Here we wish to consider the capabilities of objects,

to discuss objects in terms of the facilities and knowledge they possess; we are not in

any way concerned with the details of possible software implementations for objects.

We use the phrase object type to represent this idea of object capabilities.

(Manufacturer)

(Bottle)
[size = 10]

(Bottle)
[size = 20]

product

product

maker

maker

Figure 2.1 Object diagram

Using the concept of object type, we can draw a more generic description of the

model.

Manufacturer
product maker

Bottle

size : Number

Figure 2.2 Type view

Figure 2.2 is drawn using the OMT notation [Rumba91]. Each rectangle represents

an object type and lines between rectangles represent associations between objects.

The name of the object type appears at the top of the rectangle, separated from the rest

of the contents by a horizontal line. We require object type names to begin with an

upper-case letter. The remainder of the rectangle is used to hold value-typed

properties, such as size, and invariants. We call diagrams of this kind type views.

Values also have types: 3 is a value, Integer is the type of that value; 1st January

1999 is a value, Date is the type of that value. In figure 2.2, we have used the value

type Number as the type of the property size. We use the value type Number to

represent any kind of number, whole or fractional.

32 Describing structure: the basics

One major difference between the notation presented here and that found in

[Rumba91] is the lack of separation of the lower part of the rectangle into attributes

and operations. We do not believe such separation is appropriate in an object

modelling technique because we do not want to consider the data representation of

objects. It should be a matter of no concern whether or not a particular property is

modelled as stored data. The value-typed properties we show in the lower part of the

rectangle are just ‘observable’; we wish to make no decision about how they are

observed. Also, we think the concept of operations is inappropriate in essential models

because it is too restrictive to begin allocating responsibilities to particular kinds of

objects at this stage; such allocation is a matter of software design. In particular, we

have no concept of ‘update’ operations which change the values of properties or the

membership of associations. When we build state views, as described in chapter 4, we

assert changes in the values of properties as a consequence of events – clearly, then, the

properties are changing but not as a result of operations being invoked: they just

change.

So the type view above tells us that in the model of the situation there will be

objects which we will treat as bottles and others which we we will treat as

manufacturers. Although it is convenient to talk about ‘bottle objects’ and

‘manufacturer objects’ (indeed we will do so in this book) it isn’t strictly correct. We

have no way of knowing, from this model alone, exactly what the objects are, we just

know that they will exhibit the properties of bottles and manufacturers. We say the

objects conform to the relevant object types.

How do we know that bottles and manufacturers are important object types in our

situation? This is a significant issue in object modelling, and the question can only be

answered by considering each case. The identification of object types comes from an

analysis of the vocabulary of the situation, as expressed in specifications, process

manuals and by problem-domain experts. From this vocabulary it is possible to draw

up a list of potential, or candidate, object types which must be considered and refined.

In fact, within a given situation, expressed for a given purpose, problems in doing this

seldom arise; it is usually quite clear to an experienced designer which kinds of object

play an interesting and important part in the situation. We give some guidelines on

identifying objects in appendix C.

2.3 Properties

We distinguish between value-typed properties of objects, which from now on we will

just call properties, and object-typed properties, called associations. A property is a

named value that an object knows about. These are listed in the type boxes on type

views. Each object has its own set of properties, as defined by the types to which it

conforms. Properties are pieces of information about an object which can be observed

by a second object that knows the identity of the first. As we said earlier, they are not

intended to represent stored data; an object model is not a model of data representation.

In essential models we are not concerned with physical data representations and we

 2.3 Properties 33

make no distinction between basic properties and derived properties. However, when

two properties are functionally related we specify their relationship with a logical

invariant. In our state views we show how events affect property values.

We define a property by stating its name and type, which must be a value type. The

usual syntax is:

propertyName : propertyType

2.3.1 Value types

The most common value types used in this book are Number, Integer, String, Date,

Time and Symbol. A description of these types appears in appendix B.

Literal Numbers and Integers are shown using digits in the usual way. Literal

Strings are shown enclosed by single quotes. Literal Symbols are sequences of

characters preceded by a ‘%’ sign.

2.3.2 Parameterised properties

Properties may be parameterised. For example, the volume property of a bottle might

be dependent on temperature. We would write this as:

 volume(temp : Number) : Number

or just volume(Number) : Number if the meaning was unambiguous1.

2.3.3 Multi-valued properties

Properties may be multi-valued: they may yield a collection of values of the same type.

Manufacturer

possibleBottleSizes : set of Number

Figure 2.3 A multi-valued property

1All properties can be considered to be functions that return a value-typed result. Some of the functions will take
parameters, others will not.

34 Describing structure: the basics

In figure 2.3, the possibleBottleSizes property of Manufacturer yields an unordered

set of numbers when observed. The options are:

set of X An unordered collection of

values of type X, with no

duplicates allowed
bag of X An unordered collection of

values of type X, with

duplicates allowed
seq of X An ordered collection of

values of type X, with

duplicates allowed

In general, a multi-valued type may appear wherever a single-valued type is valid2.

2.4 Associations

In figure 2.2 above we show an association between objects conforming to the type

Bottle and objects conforming to the type Manufacturer. How should we interpret that

association? Informally, we say it means that if you identify a bottle object you can

also identify, by virtue of the association, a manufacturer object, the manufacturer who

made it. If you identify a manufacturer object you can also identify the set of bottles

made by that manufacturer. We know that this will be a set, rather than a single object

because of the black blob on the end of the line. When we use an association in this

way, to identify the objects at the other end, we say we are ‘following’, or navigating,

the association. Remember, we are not describing software or even a database design

here, we are just trying to formalise our understanding of a situation. So you shouldn’t

read into a term such as navigating anything connected with access paths or

implementation visibilities.

Every association can, normally, be navigated in both directions. In fact, we have a

pair of related associations, each with different characteristics3. To make this clear,

2In the appropriate places, such as in event specifications, we also allow multi-valued object types, defined using
the same syntax.

3Formally, we say that an association describes two functions, in this case one mapping each object of type Bottle
to one object of type Manufacturer and another mapping each object of type Manufacturer to zero or more objects
of type Bottle. The functions described are:

 maker : Bottle →→→→ Manufacturer

 product : Manufacturer →→→→ set of Bottle

The function maker is a function mapping members of Bottle to members of Manufacturer and product is a
function mapping members of Manufacturer to sets of members of Bottle. These two functions are logically
related.
Given m : Manufacturer

 product(m) = {b : Bottle | maker(b) = m}

The mathematical notation used throughout this chapter is described in appendix A.

 2.4 Associations 35

when we are considering a particular navigation direction we refer to the source and

the destination types. The source type is the type being navigated from, the destination

is the type being navigated to. The pair of associations are related in that they yield

consistent results: for any given bottle, the set of products of the bottle’s manufacturer

must include the bottle.

2.4.1 Roles

The ends of the association line can be annotated, as shown above, with a string that

identifies the role played by the object(s) at that end of the association with respect to

the object(s) at the other end. So, in figure 2.2, the bottles are the products of the

manufacturer and the manufacturer is the maker of the bottles. When there is only a

single association between two object types it is not mandatory to use role labels. If a

role label is omitted the role is given a default name equal to the name of the type at

that end of the association, with the first, upper-case, letter replaced by lower-case.

When there are two or more associations between two object types, role names

become essential to distinguish the associations.

In figure 2.4, an extra association between Bottle and Manufacturer has been added

to represent the bottles held as stock by the manufacturer. Each association must have

a unique role name. For the manufacturer the role names are product and stock; for the

bottle they are maker and stockist. Since these two associations are distinct, a bottle’s

maker and stockist may be two different objects.

Manufacturerproduct makerBottle

size : Number

stock stockist

Figure 2.4 Role names

2.4.2 Multiplicities

Placing different symbols at the end of the association line modifies our expectations

of what we will obtain when we navigate the association. An unadorned line means

that navigating the association, in that direction, will always yield a single object

conforming to the type at that end, as with the bottle maker above. A black blob

indicates that navigation will yield a collection of objects; a black blob by itself

indicates a set. We call associations with a black blob multiple associations.

We use the word set in its mathematical sense here: the set may have zero or more

members but cannot have duplicates. So, in figure 2.4, the same Bottle object cannot

appear twice in the manufacturer’s product collection.

36 Describing structure: the basics

As we will see later in this chapter, constraints may be added to associations to limit

the size of the collection represented by the black blob. One particular constraint, the

constraint that limits the size of the collection to zero or one, occurs very frequently

and so a special notation is provided for it.

Manufacturer

product maker

Bottle

size : Number

Label

Figure 2.5 Association multiplicities

The white blob that appears in figure 2.5 indicates an optional, single association. If

we identify a bottle we might be able to identify a single label associated with it, or

maybe not. As things stand, the model gives us no indication of why or when a label

will be associated. However, it does clearly indicate that once a label becomes known

in the situation it is always associated with a bottle; the situation does not allow

unaffixed labels.

There is no reason why associations should not have adornments at both ends. For

example, consider figure 2.6.

Company
employee

employer

Person

Figure 2.6 A many-to-many association

Each company has many employees and each person may have many employers

(many jobs at once). When trying to understand these kinds of association it pays to

remember that the line really represents two quite distinct (but related) associations,

one in each direction.

 2.4 Associations 37

2.4.3 Qualifiers

Sometimes we want to be more specific about a multiple association by showing how

the source distinguishes between the destination objects. We do this by adding a

qualifier to the association, at the source end.

Manufacturer

product(Date)

Bottle

size : Number

Figure 2.7 Qualified association

Let’s make the crazy assumption that the manufacturer makes exactly one bottle per

day. In figure 2.7, we have replaced the manufacturer’s product association by a

qualifier box. The name of the qualifier becomes the default role name at the other end

of the association, but another role name can still be specified if desired. The qualifier

must have a type: the value type Date is used in this example. We interpret the

qualifier, informally, as meaning that given a manufacturer and a date we can identify a

particular bottle (the bottle made on that date)4. Since the association has no

adornment at the bottle end, we must assume that each possible combination of a

manufacturer and a date will yield exactly one bottle. This cannot be true because the

type Date represents all possible dates; its domain is infinite. In fact, in any reasonable

model, only certain dates will yield bottles. Unless we can use a different qualifier

type, which limits the range of dates, we must change our model to make it correct, as

shown in figure 2.8.

More likely is that the manufacturer makes a variable number of bottles each day.

We can show this by making the destination end of the qualifier a multiple, as in figure

2.9.

A qualifier may have more than one parameter. The type of each parameter must be

shown inside the parentheses.

4If we think of an association as a function that takes an object of the source type as a parameter and returns an
object, or a set of objects, of the destination type, then a qualifier describes a similar function that takes two
parameters: an object of the source type and another of the qualifier type. In this example the qualifier describes a
function of the form:

 product : (Manufacturer ×××× Date) →→→→ Bottle

Since product is also the default role name in this case, the association also describes a secondary function:

 product : Manufacturer →→→→ set of Bottle

Since any adornments placed at the end of a qualified association affect the primary function (the first one shown in
this footnote), we always assume that this secondary function yields a set. The choice of primary or secondary
function is made according to the number of parameters supplied.

38 Describing structure: the basics

Manufacturer

product(Date)

Bottle

size : Number

Figure 2.8 Optional qualified association

Manufacturer

product(Date)

Bottle

size : Number

Figure 2.9 Qualifier yielding a set

2.4.4 Aggregation

Aggregation is often referred to as a ‘whole-part’ or ‘is-part-of’ relationship, where the

whole, the aggregate, is made up of its parts. While this seems satisfactory at a

superficial level, it is much more difficult to say exactly how such a relationship differs

from associations such as those we have already been considering. Is a bottle in a

whole-part relationship with its label? Is a company in a whole-part relationship with

its employees? Unless we can come up with some concrete semantics for whole-part

relationships which go beyond those defined for associations, the concept has no place

in our modelling discipline.

The OMT notation we have adopted has notation to represent aggregation: a small

diamond is placed at the end of an association line. The challenge is to define a precise

meaning for this notation. We can think of the following three possible ‘meanings’ for

aggregation, which could be combined in various ways:

•••• An implied sharing of properties. Let us say that a car is an aggregate of its

parts. Give the car a property that represents its colour. We might say each part

shares that property, so that the doors will be the same colour as the car. So this

implies that properties of the aggregate propagate to its parts. But the opposite is

true, too. If each part has a property that is its weight, the car also has a weight

property that is a direct function of the properties of its parts. Somewhat

reluctantly, we discard this notion of aggregation as too imprecise, particularly

since the same effect can be obtained using invariants.

•••• Encapsulation. The idea here is that the aggregate encapsulates its parts in some

way. There might be two reasons for wanting to do this: the first is to enable the

construction of more robust and modular software, the second to control

 2.4 Associations 39

complexity in the model. We disregard the first of these because, in the essential

model, we are not considering software at all. The second is a powerful

argument, since the abstraction provided by encapsulation is a vital part of object

theory. The idea that one object is composed of others, and that the components

are not known to clients of the whole, is a powerful structuring principle in

object technology. We reject the idea that the diamond notation be used to

represent this powerful concept because, visually, it does not imply

encapsulation. We have developed our own notational conventions to deal with

levels of encapsulation which are discussed in chapter 12.

•••• Life-time dependency. We might say that the parts in an aggregate cannot

move from one aggregate to another. That is, each part must, at the time it

becomes known in the situation, become connected with an aggregate and must

remain connected until it or the aggregate is destroyed. Alternatively, we might

say that when the aggregate is created it takes on a fixed structure of parts that

cannot be changed during the life-time of the aggregate, but when the aggregate

is destroyed the parts may become components of another. Both of these imply

that aggregation is a constraint on the relative life-times of the aggregate and its

parts: either the life-times of the parts are contained within the life-time of the

whole or the life-time of the whole is contained within the life-times of its parts.

We choose aggregation to mean life-time dependency; in particular, that the life-times

of the ‘parts’ are contained within the life-time of the ‘whole’. The ‘parts’ are

permanently attached to the ‘whole’, and cannot be removed from it without being

destroyed. Conversely, destroying the ‘whole’ destroys the ‘parts’.

Aggregation is shown as a diamond placed on the association line adjacent to the

type whose instances have the containing life-time (the ‘whole’ or ‘aggregate’).

Figure 2.10 gives a classic example of an ‘is-part-of’ relationship: A division is part

of a company. Using our semantics for the diamond we can offer a more precise

meaning. We define this diagram to mean that each division must be associated with a

single company (because there is no blob on the line at that end) and it must remain

associated with that company throughout its life-time. Divisions can be created and

destroyed during the life-time of a company but a division cannot be moved from one

company to another. If the company is destroyed, so are the divisions. The effect of

the diamond is to ‘freeze’ that end of the association.

DivisionCompany

Figure 2.10 Aggregation

40 Describing structure: the basics

By moving the diamond to the other end of the line, we change the meaning

completely. In figure 2.11 we have made the life-time of the company contained

within the life-time of any associated division. The company is now a static structure.

It must be associated with the required divisions on creation and they cannot

subsequently be changed. Although the company can be associated with any number

of divisions, that number is fixed on creation of the company. Although each division

must be associated with a single company, there is no reason why a division shouldn’t

be attached to a different company when its current one is destroyed. By putting a

diamond at both ends we make the life-times of the associated objects equal. In this

example it would mean that a company and its divisions must be created and destroyed

as a unit.

DivisionCompany

Figure 2.11 Static company structure

2.4.5 Association properties

Associations may be given their own properties, as shown in figure 2.12. Each

association between a person and a company has a salary property. If a person has two

employers, he or she has two distinct salaries, as you can see from the object diagram

in figure 2.13. In this diagram, the association properties have been shown explicitly

as ovals on the links between objects.

Association properties are most useful on associations that are multiple at both ends

(often called ‘many-to-many’ associations), because it is difficult to position the

property at one end or the other in these associations.

The name of an association property is introduced into the name space of the types

at both ends of the association, and its name must not clash with the names of other

properties defined for the types, nor with any role names.

Company

employee employer

Person
salary : Number

name: String name: String

Figure 2.12 Association property

 2.4 Associations 41

(Person)
[name = ‘Jane’]

(Company)
[name = ‘abc Ltd’]

(Company)
[name = ‘xyz Ltd’]

(Person)
[name = ‘Ruth’]

(Person)
[name = ‘Linda’]

salary =
20000

salary =
8000

salary =
13000

salary =
26000

Figure 2.13 Example of association properties

In principle, more than one property may be attached to the association, and shown

in the box. However, when there are several properties it is more usual to create a new

object type and attach this to the association, as shown in figure 2.14.

Company

employee employer

Person

Employment

salary : Number
startDate : Date

Figure 2.14 An association type

The new object type can then be used in the normal way and have other

associations. Attaching an object type to an association introduces a new role name to

the association, which can be shown explicitly near the arc if necessary. Otherwise, the

usual default role name rule applies. In figure 2.14, attaching the Employment type to

the association introduces the (default) role name employment. This name must not

clash with any other role names already defined for the types at either end.

We need to consider the difference between the model shown in figure 2.14 and that

shown in figure 2.15, which is a more traditional way of dealing with many-to-many

associations.

When you navigate from person to company in figure 2.14, you identify a set of

companies so it is not possible for a person to have two or more jobs with the same

company. No such constraint applies in figure 2.15 because the set of employments

associated with a person might all be legitimately associated with the same company.

We would need to add specific constraints to give figure 2.15 the same meaning as

figure 2.14.

42 Describing structure: the basics

Company

employee employer

Person Employment

salary : Number
startDate : Date

Figure 2.15 Splitting a many-to-many association

2.4.6 Ternary associations

Occasionally, we desire to model associations between three or more types. A rather

informal notation for this appears in [Rumba91] which is useful for sketching ideas.

However, all ternary and other higher-order associations can be modelled more

precisely using binary associations together with new types that represent the

association explicitly, attached properties and/or qualifiers.

2.4.7 Use of ‘?’

Drawing a simple line between two type boxes means something quite specific: a one-

to-one association. Sometimes we want to be rather less precise than this, to say ‘there

is an association between these types but I haven’t yet decided on their multiplicity’.

We can say that by placing a ? at the ends of the association about which we have yet

to decide.

Manufacturer
product maker

Bottle

size : Number ?

Figure 2.16 Undefined associations

In figure 2.16, we have decided that each bottle is associated with exactly one

manufacturer, but we have not yet decided how many bottles are associated with each

manufacturer. We cannot navigate the association towards Bottle meaningfully until

we have decided.

We also use ? for another purpose: when to provide details about one end of an

association would be to over-specify the model. This happens when we wish to divide

our model into parts but limit the knowledge that one part has of another. By using a ?

we can indicate that an association exists but avoid exposing details of it. You will see

? being used for this later in this book (e.g. in chapter 11).

 2.5 Type extension 43

2.5 Type extension

One type may be defined as a sub-type of another. This is often called an ‘is-kind-of’

relationship. A sub-type ‘inherits’ all the properties, constraints and associations of its

super-type5. The word ‘inherits’ is used with caution here because we are not defining

type extension to be linked to the class inheritance found in object-oriented

programming. It is true that, in implementation, the second can be used to implement

the first, but that is not relevant here. We define sub-typing to imply object

conformance: an object conforming to the sub-type also always conforms to the super-

type. The exact rules governing conformance vary between the essential, specification

and implementation models but, broadly, the sub-type can extend the capabilities of the

super-type but not restrict them.

Type extension, or sub-type, relationships are shown by a line between the super-

type and its extensions. Somewhere along the line between the super-type and the first

line junction (or the sub-type, if only one) there must be an equilateral triangle with

one apex on the line and the opposite side perpendicular to the line. The triangle must

point towards the super-type.

Company
employeeemployer

Person

Corporation Partnership

turnover : Number

regNo : Number

Figure 2.17 Type extension

Figure 2.17 shows that a corporation is a kind of company, as is a partnership. An

object conforming to Corporation also conforms to Company. Each corporation object

has a registration number property plus all the properties and associations of a

company, such as a set of employees. The value of type extension is that it allows us

to describe clearly the differences between related types. It also introduces the idea of

object equivalence, often called polymorphism. The model shown in figure 2.17 makes

it clear that a person expects to work for an object displaying the characteristics of a

5But we may wish to constrain the set of inherited features to encapsulate the elements of our design better. This is
discussed further in chapter 7.

44 Describing structure: the basics

company; the person does not distinguish between corporations or partnerships, they

are happy to work for either.

2.5.1 Abstract types

Figure 2.17 does not imply that all objects which conform to Company must also

conform to one of its sub-types. We could have an object that is a Company but not

specifically either a Corporation or a Partnership. We can introduce a constraint that

all objects conforming to the super-type must also conform to one of its sub-types by

defining the super-type as abstract. We can constrain Company to be an abstract type

by adding a special kind of type invariant to its representation in the type view, as in

figure 2.18. The general use of type invariants will be discussed shortly.

Company
employeeemployer

Person

Corporation Partnership

turnover : Number

Invariants:
abstract

regNo : Number

Figure 2.18 An abstract type

The difference between figures 2.17 and 2.18 can be explained by Venn diagrams

(see figure 2.19). In figure 2.17, objects conforming to Corporation and Partnership

make up disjoint subsets of the set of objects conforming to Company (figure 2.19(a)).

In figure 2.18, the disjoint sets completely partition the superset (figure 2.19(b)).

As an aid to understanding type extension with Venn diagrams, we suggest you

think of the extension triangle as meaning ‘subset’, and the set of sub-types as meaning

‘partitions’. If the super-type is abstract, the ‘subset’ is just the same as the super-type

set, and hence the edge of the subset circle lies on top of the enclosing circle, as in

figure 2.19(b). According to this interpretation, figure 2.19(a) should really be drawn

as is figure 2.20.

 2.5 Type extension 45

Company Company

Corporation PartnershipCorporation Partnership

(a) (b)

Figure 2.19 Effect of abstract type on Venn diagram

Company

Corporation Partnership

Figure 2.20 Applying the partitioning rules

2.5.2 Using sub-types to eliminate optional associations

The introduction of a sub-type will often eliminate optional associations, as in figure

2.21.

Bottle Label

GlassBottle Label

Bottle

PlasticBottle

Figure 2.21 Eliminating optional associations

46 Describing structure: the basics

The top part of the diagram shows that each bottle may optionally have a label.

This optionality can be explained using bottle sub-types: plastic bottles never have a

label; glass bottles always have one.

2.6 Constraints and invariants

2.6.1 Logical type invariants

You will have noticed our attempts to make the meaning of the modelling notation as

precise as possible. One reason for this is to allow a common understanding among a

group of designers, but another, perhaps more important, is to allow us to use the

formal precision of mathematics, in the form of set theory and logic, in conjunction

with the model.

An important use for mathematical expressions is the specification of logical type

invariants. A logical type invariant is a logical expression that will always be true for

every object conforming to the type. Some examples are given in figure 2.22.

Manufacturerproduct makerBottle

size : Integer
value : Number

Invariants:
size < 100
size >= 0

stock

prodLevel : Integer
stockValue : Number

Invariants:
stockValue = sum stock.value
prodLevel = #product

stockist

Figure 2.22 Type invariants

The invariants are shown in the type rectangle, under their own heading. In figure

2.22, the size of bottles must be non-negative but less than 100, the stockValue of a

manufacturer is defined to be the same as the sum of the values of its products, and the

prodLevel is defined to be the size of the set of products. These last two require some

explanation:

sum stock.value

is an expression that includes a navigation through the model. For any given

Manufacturer, the simple expression stock represents the set of Bottles obtained by

navigating from that Manufacturer along the association with the stock role name. The

addition of .value indicates that we want to collect the value properties of the stock

bottles. Finally, we sum this collection of numbers.

In the other invariant, #product means the size of the set of Bottles obtained by

navigating the association called product. The # operator allows us to obtain the size

of any collection. The two invariants for Manufacturer do not imply in some way that

prodLevel and stockValue are ‘derived’ rather than stored. Since properties are not

 2.6 Constraints and invariants 47

data representations, merely an indication that an object ‘knows about’ a value, the

notion of ‘derived’ has no meaning. We are merely indicating the fixed relationships

that exist between properties.

2.6.2 Sub-ranges

Simple restrictions on the range of integers can be specified in the property definition,

rather than as an invariant, by using sub-ranges. Sub-ranges take the form:

m..n

where m and n are positive integers, or expressions yielding positive integers

(interpreted in the name space of the type). In the case where m = n, the single integer

or symbol can be used alone, e.g. 6. So, in figure 2.22, the size property could have

been defined as:

size : 0..99

and the invariants removed.

2.6.3 Property invariants

We can constrain individual properties such that their values remain fixed during the

lifetime of their owning object. We indicate this constraint using the special type

invariant const.

Another constraint that we can apply to individual properties is to require them to

yield a unique value for every object in the model conforming to the type. We indicate

this constraint using the special type invariant unique. In figure 2.23, the property size

is constrained to be both constant and unique6.

Bottle

size : Number

Invariants:
const size
unique size

Figure 2.23 Property invariants

6Mathematically, the unique constraint can be expressed as:
 ∀∀∀∀ b : Bottle - {self} •••• b.size ≠≠≠≠ self.size

48 Describing structure: the basics

2.6.4 ‘nil’

The special value nil is logically a member of all object and value types, and it

represents an undefined or unset property. Properties that can take the value nil are

called optional properties, and must be specified as such using a type invariant.

Bottle

size : Number

Invariants:
optional size

Figure 2.24 The optional invariant

In figure 2.24, the size property of Bottle is defined to be optional; that is, it may

take the value nil. Without the optional invariant, the property could not validly take a

nil value.

2.6.5 Constraints on associations

A constraint indicates some limitation which applies to the model. Type invariants are

a form of constraint. Constraints that appear outside type rectangles are enclosed

within square brackets. We can write informal constraints by writing a comment

(enclosed by double-quotes) inside the brackets; alternatively, we can write a precise

constraint using navigation expressions and mathematical symbols.

A common kind of constraint is one that limits the size of the set of objects yielded

by an association. A completely unconstrained association is shown by placing a black

blob at the end of the line, as we have already seen. Two constraints have been used

already: an unadorned line constrains the size of the set to be one; a white blob

constrains the size of the set to be zero or one. Any other constraints must be shown as

annotations placed next to the black blob. Constraints on multiplicity are specified

using sub-ranges, as defined on page 47, enclosed, like all constraints, inside square

brackets.

In figure 2.25, each person can have between zero and six employers. Also, each

company has a property representing the maximum number of staff it may employ; this

property is used to specify a limit to the size of the employee set. As a special case,

when only a lower limit is required, the lower limit may be followed by a + sign, for

example [1+].

Another kind of constraint that we can apply to an association specifies the order of

objects yielded by the association. By default, navigating an association yields a set,

which is unordered and cannot have duplicates: in figure 2.25, the same person cannot

 2.6 Constraints and invariants 49

be employed twice (at the same time) by a company. We can use constraints to specify

a sequence, a bag or a sort order. These are described in the following table.

name syntax ordered? duplicates?

bag [bag] NO YES

sequence [seq] YES YES

sort [‘sort spec.’] YES YES

The sort spec. may be informal or formal. If formal, it must declare two variables of

the type being sorted (commonly called a and b) and include a logical expression that

relates them. In the sequence represented by the association, a will come before b if

the expression is true.

BottleConveyorBelt
[seq]

content

first

last

Invariants:
first = head content
last = last content

size: Number

[a,b: Bottle; a.size > b.size]

Figure 2.26 Sequence and sorted constraints

Figure 2.26 shows examples of the sort and sequence constraints. In the sorted

association, the bottles will be arranged in descending order of size. The contents of

the conveyer belt are defined as a sequence, allowing two other associations to be

defined as the first and last elements of the sequence. These associations must be

optional because the sequence might be empty7.

7We define the result of applying the first or last operator to an empty sequence to be nil.

Company
employee employer

Person

staffLimit : Integer
[0..6][0..staffLimit]

Figure 2.25 Constraints on multiplicities

50 Describing structure: the basics

2.6.6 Constraints between associations

Constraints may exist between two or more associations. These are shown as dashed

or faint arrows drawn between the association lines, with a description of the constraint

alongside, enclosed by square brackets.

In figure 2.27, the constraint indicates that the number of bottles a manufacturer has

in stock must always be less than half those produced. It is exactly equivalent to

writing the same expression as an invariant for Manufacturer. However, we sometimes

prefer to show the constraint directly between the associations because it reduces the

coupling between the type and its associations8.

All constraints between associations are directional. In figure 2.27, we are

describing a constraint on the results of navigating from Manufacturer (the source) to

Bottle; the direction is established in this example by the use of the Manufacturer’s role

names9. It is a logical consequence of constraints between associations that the

constrained associations always yield the same source object when navigated in the

opposite direction. In this example, it is a constraint that, for any Bottle, the maker and

stockist of that bottle will be the same Manufacturer object.

Manufacturerproduct makerBottle

size : Number

stock

[#stock < (#product / 2)]

stockist

Figure 2.27 Constraint between associations

2.6.7 Subset constraints

A subset constraint is a special kind of constraint between associations that occurs so

often that we give it its own syntax. A subset constraint specifies that the set of objects

yielded by one navigation is a subset of the objects yielded by another. For example, in

figure 2.28 we specify that the manufacturer’s stock is a subset of all its production10.

The arrow has a single arrowhead to show which is the subset: the arrow points to the

superset.

This constraint is also directional: from Manufacturer to Bottle. We can deduce the

direction by examining the multiplicities; a subset constraint can only apply between

8If we use an invariant we have made knowledge of the associations explicit in the main description of the type.

9Clearly, then, the expression could not use role names taken from both the source and the destination. For
example, this expression could not reference maker or stockist.

10Manufacturer::stock ⊆⊆⊆⊆ Manufacturer::product

Note also that ∀∀∀∀ b : Bottle •••• b.maker = b.stockist

 2.7 State types 51

two multiple associations (i.e. black blobs). If there were block blobs at both ends of

the associations, we would need to indicate the direction explicitly by naming the

source type in the constraint, as follows:

[Manufacturer::subset of]

A slightly different form of the subset constraint occurs when we wish to indicate that

the object yielded by a single or optional association is a member of a multiple

association. In this case we replace subset of by member of.

Manufacturerproduct makerBottle

size : Number

stock

[subset of]

stockist

Figure 2.28 Subset constraint

2.7 State types

Let us revisit an earlier example and change the situation slightly. Figure 2.29

represents the employer/employee relationship between people and companies that we

have seen before, changed so that a person may have only zero or one employer.

Company
employee

employer

Person

salary : Number
Invariants:

optional salary
(employer ≠ nil) ⇔ (salary ≠ nil)

Figure 2.29 The Person–Company relationship

Since a person’s salary is now a single-valued property, we have placed it within the

Person type. This is a bad choice because it must be nil when the person has no

employer. A better choice would be to attach it as an association property, as before,

but we might decide to build a more descriptive model by creating two sub-types of

Person.

In figure 2.30, we have moved the salary property into the EmployedPerson sub-

type, and we have also been able to remove the optional association and replace it by

one with a tighter constraint. In general, this seems a great improvement, but it has one

very significant drawback: we have condemned unemployed people to a life-time of

leisure.

52 Describing structure: the basics

Company

employee

employer

Person

Unemployed
Person

Employed
Person

salary : Number

Figure 2.30 Sub-types of Person

The semantics of our models are such that objects cannot change the set of types to

which they conform during their life-times, so an object created to conform to the

UnemployedPerson type can never become an EmployedPerson. You might argue that

this is an unnecessary and artificial restriction but it can be justified by considering the

requirements for dynamic models. As you will see in chapter 4, we wish to construct a

precise model that describes all possible changes in state in the situation, using a set of

state machines, one for each object type. If we were to allow objects to change their

type, this would imply terminating the state machine defined for one type and initiating

the state machine for another. But an object changing its type is just another example

of a change in state in the situation, and so, to maintain our precision, we must

represent that change as a transition on a state machine. On which type’s state machine

would the transition appear? The lack of any reasonable answer to this question has

led us and others to find alternative ways of dealing with this problem.

We introduce the concept of state types, which behave as normal types in nearly

every respect but are not described by state machines. Instead, they represent states in

the machine of their super-type. State types are distinguished in type views by having

a diagonal line across their top-left corner.

Figure 2.31 shows the use of state types. State types must always be a sub-type of a

normal type because they represent one possible state for objects conforming to the

normal type. Objects cannot be explicitly created to conform to a single state type;

conformance with state types will change as the object changes state. Not all the

possible states need be shown in the type view, but each state type in the type view will

correspond to exactly one state on a statechart in the state view.

State types cannot have normal types as sub-types but they can have other state

types; this represents a nested state structure: if the object is in the state represented by

a state type it must also be in one of the states represented by its sub-types11. A group

11But it might be in one of the states not shown. To understand the state structure completely it is necessary to refer
to the state view.

 2.8 Summary 53

of state types connected to their super-type by a single extension triangle, as in figure

2.31, represents exclusive states. A type may have several such groups connected to it,

each connected via a separate triangle. The object must be in one state from each

group.

Company

employee

employer

Person

Unemployed Employed

salary : Number

Figure 2.31 State types

The use of state types provides a direct link between the type view and state view of

a model. Their use implies a high degree of understanding of, and confidence in, the

model. Typically, all types are initially treated as normal types; those which prove to

be best treated as states are converted later to state types.

The names of state types are added to the name-spaces of their parent types, and can

be used in navigation expressions. State type names need not be globally unique.

2.8 Summary

• We model situations in the world using the concepts of objects, values and

events.

• Models of situations in the world are called essential models.

• An object type represents a particular kind of object, and is drawn as a rectangle.

• Diagrams called type views are constructed from object types and their

relationships.

• Type views describe the structure of the model.

• Object properties are shown inside the object type rectangle and represent named

values.

• Associations between object types represent possible links between objects of

those types.

• Considerable detail can be specified for associations, through multiplicities,

qualifiers, aggregations and association properties.

54 Describing structure: the basics

• One object type can be defined as a specialisation of another, inheriting its

parent’s associations and properties.

• The semantic content of the model can be increased by adding a variety of

constraints, to types, properties and associations.

• State types allow detailed definition of the properties and associations gained and

lost by an object as it moves from one dynamic state to another. They also

provide a link with state views.

2.9 Bibliographic notes

An excellent discussion of the differences between objects and values appears in

[Kent91].

Our ideas for mathematical specifications, and the notations used to describe them,

derive from the formal specification language Z. An excellent introduction to Z can be

found in [Words92].

The idea of using OMT-style type boxes to represent object states seems to have

been first mentioned in [Rumba92]. However, that article acknowledges Desmond

D’Souza for the original suggestion. D’Souza himself expands on the theme in

[D’Souz92].

The formalism in [Marti92], which is derived from the (apparently unpublished)

Ptech technology, considers types and states to be equivalent. We find it more useful

to distinguish between them because it provides a more straightforward mapping onto

available object-oriented implementation technologies, in which objects cannot

normally change their type dynamically.

2.10 References

[D’Souz92] D. D’Souza. Education & training: Teacher! teacher!. Journal of Object-Oriented

Programming 5(2):12–17, 1992.

[Kent91] W. Kent. A rigorous model of object reference, identity, and existence. Journal of Object-

Oriented Programming 4(3):28–36, 1991.

[Marti92] J. Martin and J. Odell. Object-Oriented Analysis and Design, Prentice-Hall, Englewood

Cliffs, New Jersey, 1992.

[Rumba91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented

Modeling and Design, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[Rumba92] J. Rumbaugh. Modeling & design: Derived information. Journal of Object-Oriented

Programming 5(1):57–61, 1992.

[Words92] J. Wordsworth. Software Development with Z, Addison-Wesley, Wokingham, Berkshire,

1992.

 55

CHAPTER 3

Describing structure:
adding more detail

3.1 In search of expressive power

In the preceding chapter we presented the basic elements of structural views. Although

basic, these elements are not imprecise; they have a precise interpretation underpinned

by mathematical logic and set theory. When notations have a precise meaning it

becomes important that they are capable of expressing everything that needs to be

expressed. In this chapter we present a few additional pieces of notation that improve

the expressive power of type view diagrams, and discuss in more detail the meaning of

some ideas already introduced.

3.2 Navigation

In chapter 2 we used some simple expressions to navigate around type views. These

navigations can become quite complex, and we need to be clear on their exact

formulation.

3.2.1 Name-space

Figure 3.1 uses most of the notation described so far. We will use it to explore the way

in which navigation expressions are written.

Each type view represents a separate name space; that is, within a type view the only

names that may be referenced are those on the diagram. All navigation expressions are

written from the point of view of some particular object, conforming to one of the

types in the type view. We need to define the set of names in scope for any particular

type. These are as follows:

• property names of the type and its super-types;

• the role names (including implied role names) of associations;

56 Describing structure: adding more detail

• qualifier names of the type and its super-types;

• the names of properties attached to associations connected to the type or one of

its super-types;

• the names of exposed states.

Company

Manufacturer

turnover : Number

prodLevel : Number

employeeemployer

Person

Employment

salary : Number
startDate : Date

name : String

product(Date)
Bottle

size : Number

TaxOffice

areaCode : String

Label

text : String

BankAccount

balance : Number
accountNo : Integer

Bank

sortCode : Number

Figure 3.1 Type view for employment examples

So, for the Manufacturer type in figure 3.1, the following names are in scope:

• prodLevel – property defined locally;

• turnover – property defined by super-type;

• product – name of qualified association to Bottle;

• employee – name of inherited association to Person;

• employment – implied role name of association type on employee association.

Notice that the properties of Employment are not in scope; they must be accessed via

the employment name.

3.2.2 Expressions

To write a navigation expression we must start with an object of a known type and we

must have a way of referring to that object. Let us use the symbol m to refer to an

object conforming to the type Manufacturer.

 3.2 Navigation 57

We would write this declaration as:

m : Manufacturer

meaning that m is a variable that can refer to an object taken from the set of objects

conforming to the type Manufacturer. We are using the type name to represent the set

of objects in the model that conform to it1. Given this declaration, the expression:

m.prodLevel

represents the production level (a Number) of the object represented by m. Let us be a

little more ambitious. The expression:

m.employee

represents the set of Persons employed by m.

Frequently, we want to define the starting scope of a navigation by saying ‘Given

some arbitrary object conforming to type X, the result of navigating from that object...’

Rather than declaring a symbol to represent an arbitrary object, as we did with m

above, we can just start the expression with a type name followed by two colons:

Manufacturer::employee

This means ‘the set of employees of some object conforming to Manufacturer.’ We

frequently write navigation expressions within the context of a type; for example, when

defining type invariants. In this case we omit the type name at the beginning of the

expression because it is implied by the context.

Having navigated to Person objects, we can access names in scope for type Person.

So:

Manufacturer::employee.bank

represents the set of banks used by employees of a manufacturer. As we move along

the navigation expression the name scope changes to be that of the type of objects

being considered at that point. Since Manufacturer::employee represents a set, any

subsequent navigation must be applied to each member of the set and the result formed

by constructing a set from the objects located2.

1We discuss how this set is defined in chapter 4.

2If we use mathematical set notation we can express this more clearly:

 Manufacturer::employee.bank ≡≡≡≡ {p : Manufacturer::employee •••• p.bank}

58 Describing structure: adding more detail

We apply slightly different rules when accessing value properties:

Manufacturer::employee.name

represents the bag of names (i.e. a bag of Strings) of employees of a manufacturer.

When we collect together a value from each member of a set of objects we obtain a bag

not a set3. Since values have no identity separate from their value, duplicates would be

removed if we put them in a set, and this is not usually what we want. You will

appreciate the benefit of collecting values in a bag by considering:

sum (Company::employment.salary)

This expression represents the sum of the salaries paid to the employees of a company.

If we collected the salaries in a set we would obtain the wrong answer (or, at least, an

unexpected answer) if two employees were paid the same amount.

If each subsequent navigation from members of a set yields, in turn, another set, the

result is the union of the sets. Consider:

Manufacturer::employee.bank.bankAccount

This expression represents the set of all the bank accounts of all the banks used by the

employees of a manufacturer4.

To navigate via a qualifier we must supply a parameter:

Manufacturer::product(1-Jan-94)

This represents the set of bottles made on that date. Optional associations are slightly

more complicated:

Bottle::label

may or may not yield a Label object. If no label is associated it will yield the value nil5.

3Using mathematical notation, and taking into account that a bag is a set of tuples relating a member to the number
of times it occurs:

 Manufacturer::employee.name ≡≡≡≡ {p : Manufacturer::employee ••••

 (p.name, #{q : Manufacturer::employee | q.name = p.name}) }

4Using mathematical notation:

 Manufacturer::employee.bank.bankAccount ≡≡≡≡

 ∪∪∪∪ {b : Manufacturer::employee.bank •••• b.bankAccount}

5We sometimes prefer to treat an empty optional association as yielding the empty set, written { }.

 3.2 Navigation 59

This raises a slight problem when we have expressions such as:

Manufacturer::product(1-Jan-94).label

because the first part of the expression yields a set of bottles and we must gather up the

results of navigating to the label of each bottle. Some of these results will be Label

objects, the others nil. The solution is simply to say that the nil values are ignored.

The following are some other navigation expressions:

Company::employment.taxOffice The set of tax offices of the company’s

employees. This set might well be

smaller than the set of employees.

Employment::employee The single person associated with the

employment. Navigating from a type

attached to an association will always

yield a single object.

TaxOffice::employment.employee.name A bag containing the names of all the

people whose employments are

associated with the tax office.

Label::bottle.manufacturer The manufacturer of the bottle to which

the label is affixed.

The following are some invalid expressions:

Person::company.prodLevel The properties of sub-types are not in

scope in the super-type.

Company::salary You cannot navigate directly to a

property of a type attached to an

association. See the correct example

above. The expression shown here

would be correct if salary were a simple

association property (i.e. not part of an

object type).

Manufacturer::bottle The role name of this association is

product, the qualifier name.

Given a person p, and a company c, which is one of p’s employers, how would we

refer to the start date of the person at that company? We can qualify an associated

property or type:

p.employment(c).startDate

60 Describing structure: adding more detail

This means: ‘for person p select the employment attached to the association with c and

yield its start date’6.

Finally, consider the simpler model shown in figure 3.2.

Manufacturer

prodLevel : Number

employee

employer

Person

Employment

salary : Number
startDate : Date

name : String

product(Date)
Bottle

size : Number

Figure 3.2 Type view of simpler employment example

How would you write an expression which meant ‘given an employment object, the

set of bottles made by the employer on the start date of the employment’? You might

try:

Employment::employer.product(startDate)

but startDate is not in scope for manufacturers, which is the applicable scope when the

qualifier is used.

We can’t use:

Employment::employer.product(employment.startDate)

because employment.startDate yields a bag of dates (the bag of all start dates of all

employees) rather than a single one. Instead, we use the special identifier self, which

represents the object from which the navigation began, in this case some anonymous

object conforming to Employment. The expression becomes:

Employment::employer.product(self.startDate)

How would you write an expression which meant ‘given a person object, the set of

bottles made by all the person’s employers on the start dates of their employment’?

The problem is, once again, in specifying the qualifier. We need a way of referring to

6Given p : Person, c : Company and the constraint c ∈∈∈∈ p.employer, we have:

 {p.employment(c).startDate} ≡≡≡≡ {e : p.employment | e.employer = c •••• e.startDate}

 3.2 Navigation 61

each particular manufacturer object as we obtain the correct qualifier for it. This is

beyond the scope of our navigation language. If we really wanted to describe this set

of bottles we can easily do so with a set expression:

∪∪∪∪ {e: Person::employment •••• e.employer.product(e.startDate)}

It would really be more reasonable to decompose the expression and show intermediate

functions on the type view. We could add a constrained association between

Employment and Bottle, using an invariant as described in the next section, as shown in

figure 3.3. Now the navigation expression becomes just:

 Person::employment.startingBottle

Manufacturer

prodLevel : Number

employee

employer

Person

Employment

salary : Number
startDate : Date

Invariants:
startingBottle = employer.

product(self.startDate)

name : String

product(Date)
Bottle

size : Number

startingBottle

Figure 3.3 Adding a constrained association to simplify navigation

3.2.3 Encapsulation – a warning

In this section we have seen how to construct long and complex navigation expressions

that wander around the object structure. That we can construct such expressions

doesn’t mean we should construct them. As we said when discussing aggregation, the

notion of encapsulation is central to object-oriented theory, and should be

acknowledged, even in essential models. Long navigation expressions produce

undesirable coupling between the starting type of the expression and all the other types

visited in it. Details of the associations and properties of one object type become

known, and embedded in, other object types only remotely connected to the first. One

of our goals in designing object systems, as with all modular approaches, is to

minimise coupling between parts of the system.

In general, then, we wish to avoid long navigation expressions; where possible, we

wish to limit the knowledge of one type to the details of those types with which it is

62 Describing structure: adding more detail

intimately related. Long expressions can be decomposed by adding derived properties

and associations.

We discuss issues of encapsulation in more detail in chapter 12.

3.3 Derived associations

One association can be defined in terms of another, or a collection of others.

Associations of this kind are called derived associations and are indicated on the

diagram by placing a short diagonal line across the association line.

Company

turnover : Number
employeeemployer

Person

Employment

salary : Number
startDate : Date

name : String

TaxOffice

areaCode : String

[TaxOffice::employment.employee]
[{c: TaxOffice::employment.employer |

c.turnover > 1000000}]

Figure 3.4 Derived associations

In figure 3.4, the association between TaxOffice and Person is derived. Derived

associations must be accompanied by an annotation, enclosed by [], which describes

the equivalent navigation path. This is best done formally, using a navigation

expression, as in the diagram. Although the expression defines a navigation path in

one particular direction (i.e. from TaxOffice to Person), the association can be

navigated, consistently, in either direction7. The other example in this diagram shows

that derivation expressions can be more complicated than a simple navigation. Here

we have a set construction expression that selects all companies associated with a tax

office that have a turnover greater than 1 000 000. The starting set for the selection is

defined by a normal navigation expression (TaxOffice::employment.employer), and a

logical predicate selects the required members.

Both derived associations and subset constraints between associations, described

earlier, provide ways of specifying one set of objects to be a subset of another. A

derived association also provides a rule by which membership of the subset may be

determined; a subset constraint gives no indication of why objects are in the subset,

7For any navigation expression e from type A to type B, the inverse for a given object b : B can be expressed as:

 {a: A | b ∈∈∈∈ a.e}

 3.4 Recursive associations 63

although the rule might appear in an associated type invariant. We recommend using

derived associations whenever a membership rule exists.

3.3.1 Derived associations to state types

We frequently wish to construct derived associations where the derivation is a function

of the state of a set of objects. Consider the model shown in figure 3.5.

TaxOffice

employedClient

Person

Unemployed Employed

salary : Number

client

[{p: TaxOffice::client | p in Employed}]

Figure 3.5 Derived association to a state type

A tax office is associated with a set of people who are its clients. There is a subset

of these clients who are, at any moment, employed. The derived association represents

this subset. The expression p in Employed evaluates to true if the object p is in the

Employed state. Since this derived association has been drawn with the state type as its

destination, there is an argument that the derivation expression contains redundant

information, and could have been written as:

 [{p: TaxOffice::client}]

The argument is that objects yielded by navigating the association towards the

Employed state type can only be in the Employed state. Although this is true, we prefer

to write the derivation expression in full so that it remains consistent with the general

rule for such expressions: that they define the required navigation completely.

3.4 Recursive associations

It is quite common for both ends of an association to be attached to the same object

type. A simple tree structure is a classic example. To illustrate the interpretations of

these recursive associations we present a number of examples based around a single

64 Describing structure: adding more detail

object type, the type Person. When you read these examples please bear in mind that

several would be better expressed using sub-types.

Person

mother

childOfMother

Figure 3.6 Recursive association

Every person has a mother; every mother has zero or more children8. This structure

forms a tree, as shown in figure 3.7.

(Person)

(Person)

(Person)

(Person)

(Person)

(Person)

(Person)

(Person)

childOfMother

mother

childOfMother

childOfMother

childOfMother

childOfMother

childOfMother

childOfMother

childOfMother

mother

mother

mother

mother

mother

mother

mother

mother

(Person)

Figure 3.7 Example of a recursive association

Notice how we can’t draw a complete diagram: every Person object has a mother,

and nobody has a child who is also their mother, so the set of objects is infinite. Figure

3.8 shows another example. Every person might or might not have a doctor; a person

may have patients (if he or she is a doctor – this is very suggestive of a missing object

type). Again, there is a consistency constraint: my doctor must have me as a patient.

8Note that the role name is called childOfMother rather than child. This is because the association must be
consistent when navigated in either direction. Consider what would happen if the role was child and we modelled a
person who is a father with a single child. Navigating from that person to find his child and then back again using
the same association to find the mother would have to yield the father if our concept of an association as a pair of
related functions were to hold.

 3.4 Recursive associations 65

Person

patient

doctor

Figure 3.8 Optional recursive association

A possible object structure is shown in figure 3.9. Not every person has a doctor:

person d1 in the diagram has no doctor.

(Person)
d1

(Person)

(Person)

(Person)

(Person)

(Person)

patient

doctor

patient

patient

patient

patient

doctor

doctor

doctor

doctor

Figure 3.9 Example of doctor–patient association

Some recursive associations are inherently symmetric. Consider the spouse

association, as shown in figure 3.10: if Jack is Jill’s spouse, Jill is Jack’s spouse.

Unlike the doctor–patient association considered above, there is really only one

concept here, not the two implied by a double-ended association, hence the same role

name at both ends9.

This association breaks the rule that all the associations emanating from a type must

have distinct role names. Since this association really describes only one concept we

treat it as a special case. A recursive association with the same role name at each end

defines a symmetric association and the multiplicity constraints must be identical at

each end.

9In these symmetrical associations there is really only one function being described, in this case the function
spouse. Even so, the same constraint logic applies. Given a: Person:

 spouse(a) = nil ⇒⇒⇒⇒ {p: Person | a = spouse(p)} = { }

 spouse(a) ≠≠≠≠ nil ⇒⇒⇒⇒ {p: Person | a = spouse(p)} = {spouse(a)}

66 Describing structure: adding more detail

Person

spouse

spouse

Figure 3.10 Symmetric recursive association

With a little rearrangement we could turn this example into a one-to-one

association, as in figure 3.11.

MarriedPerson

spouse

spouse

Figure 3.11 One-to-one symmetric recursive association

Many-to-many associations of this kind occur frequently. In figure 3.12 we assume

that friendship is mutual: if Jack is a friend of Jill, then Jill is a friend of Jack.

Person

friend

friend

Figure 3.12 Many-to-many symmetric recursive association

 3.5 Sub-types 67

3.5 Sub-types

3.5.1 Non-disjoint sub-types

In chapter 2 we showed how types can be defined as extensions, or sub-types, of

another. In the examples shown so far, the set of objects conforming to one sub-type is

disjoint from the set conforming to another. We can also define sub-types with non-

disjoint membership by connecting the sub-types to the super-type with separate

extension triangles, as in figure 3.13.

Merchant
employeeemployer

Person

Manufacturer Shop

turnover : Number

prodLevel : Number

Figure 3.13 Non-disjoint sub-types

The sets of conforming objects described by the sub-types are no longer disjoint: an

object can conform to both Manufacturer and Shop. The corresponding Venn diagram

appears as figure 3.14. This interpretation is in accordance with the guidelines given in

chapter 2: each extension triangle equates to a subset.

Merchant

Manufacturer

Shop

Figure 3.14 Non-disjoint sub-types on Venn diagram

68 Describing structure: adding more detail

For a more complicated example, consider figure 3.15.

Merchant

Shop IndustrialAgency

Retail
Shop

Wholesale
Shop

Manufacturer Service
Provider

Invariant:
abstract

Invariant:
abstract

Figure 3.15 Combining different kinds of sub-typing

Here, Shops and IndustrialAgencies are not disjoint, but RetailShops are disjoint

from WholesaleShops and Manufacturers are disjoint from ServiceProviders. An

object could conform to both RetailShop and Manufacturer. The corresponding Venn

diagram is shown in figure 3.16.

Merchant

IndustrialAgency

Shop

Manufacturer
ServiceProvider

RetailShop
WholesaleShop

Figure 3.16 Venn diagram for shop–agency example

 3.5 Sub-types 69

3.5.2 Multiple super-types

Sometimes, a type is-a-kind-of more than one other type. For example, we might want

to model a situation that includes both companies and merchants, as separate concepts.

We might decide that a manufacturer is both of these kinds of thing, as in figure 3.17.

CompanyMerchant

Manufacturer

turnover : NumberstockValue : Number
startUpDate : Date

prodLevel : Number

Figure 3.17 Multiple super-types

A type with multiple super-types ‘inherits’ the union of the properties, constraints

and associations of its super-types. So a manufacturer has both a stock value and a

turnover property. There must not be any name clashes between the super-types. The

simple way to eliminate name clashes is to change one of the names!

It is perfectly permissible for two or more super-types themselves to extend a

common super-type, as in figure 3.18, but they clearly cannot be disjoint extensions.

This is how we define objects that conform to two non-disjoint sub-types.

ManufacturerRetailShop

FactoryShop

Merchant

displayArea : Number

stockValue : Number
startUpDate : Date

prodLevel : Number

RetailShop

Manufacturer

Factory
Shop

Merchant

Figure 3.18 Multiple super-types with common ancestor

70 Describing structure: adding more detail

Manufacturer and RetailShop are both specialisations of Merchant but it is possible

to define objects that conform to both, such as FactoryShop. This would not be valid if

RetailShop and Manufacturer were shown as disjoint sub-types, using a single triangle.

The corresponding Venn diagram is also shown in figure 3.18.

It is clear that a factory shop has a single prodLevel property and a single

displayArea property, but how many stockValue and startUpDate properties does it

have? Should it have two of each because it gains one from being a retail shop and

another from being a manufacturer, or just one of each because, ultimately, it is just

one merchant? A case can be made for each view: the single stock value might be the

total of both the retail shop aspect and the manufacturing aspect; we might want to

model a separate start-up date for each aspect. Somewhat arbitrarily, we define this

diagram to mean that the factory shop inherits the features of merchant only once. If

you want a factory shop to have two start-up dates then you should redesign your

model to use association rather than specialisation.

3.5.3 Overriding

Overriding occurs when a sub-type redefines a feature of its super-type. The definition

given by the sub-type replaces and hides, from the sub-type and thus from all its sub-

types, the definition given by the super-type. Overriding requires care because we need

to ensure that sub-types remain conformant with their super-types. The principle is

that an object which conforms to the sub-type must also conform to the super-type.

We need to define what conformance means, so that we can ensure it is maintained.

Unfortunately, a precise definition of conformance is difficult – we discuss this issue in

detail later in this book, in chapter 8. In the essential model we are concerned only

with structural conformance, which only considers navigable structure and properties:

if navigation of a model yields a set of objects of a particular type, then observing the

properties of the objects in the set should not produce any surprises, even if some (or

all) of the objects also conform to a sub-type. The kind of surprise we have in mind

would be a constraint violation or a property of the wrong type.

Overriding of associations

Association overriding, or redefinition, occurs when the sub-type has an association

with the same type and role name as the super-type. You might want to redefine an

association for three reasons:

1. to change the multiplicity constraint;

2. to change both the associated types to be sub-types;

3. to change an aggregation constraint.

We could have drawn an earlier example using redefinition, as in figure 3.19.

 3.5 Sub-types 71

Label

GlassBottle

Bottle

[redefines]

X

PlasticBottle

Figure 3.19 Redefinition

In this example we are overriding an association to change the multiplicity

constraint. A Bottle object may or may not have a Label; a GlassBottle object always

has exactly one. The constraint is being changed from [0..1] to [1]. This is a valid

change in the constraint because [1] is a sub-range of [0..1]. The rule applying here is

that the range specified by the sub-type must be a sub-range of the range specified by

the super-type. This rule ensures that an observer of the super-type will not be

surprised by objects of a sub-type having association sets which would be disallowed

for the super-type. PlasticBottles are unaffected by this redefinition; they inherit the

association from Bottle and may still have zero or one Label10.

 The following table shows some examples of changes to multiplicities:

Super-type range Sub-type range OK?

none given [0..7] �
[1..20] [10..20] �
[1..20] [0..20] �
[1] (plain line) [0..1] (optional) �

The sub-type inherits the association role name and may not change it because to do so

would destroy conformance with the super-type. In fact, we could have deduced that

the association between GlassBottle and Label in figure 3.19 was a redefinition, even if

the arrow was missing, because, if it were not, GlassBottle would have two

associations with the role name of label, one of them inherited, which is not permitted.

Even so, we require all association overrides to be annotated with a constraint arrow.

If, in figure 3.19, the association between Bottle and Label had a role name at the label

end, that role name would apply to the redefining association even if it were not re-

specified. Any association properties or types also automatically apply to the

redefining association.

10In this respect, this model differs from the similar one that appears in chapter 2.

72 Describing structure: adding more detail

The designer can choose whether the redefinition redefines both ends of the

association or just one. In this example the association is being redefined for the Label

end only; this is indicated on the diagram by placing a cross at the GlassBottle end of

the line. A cross at the end of an association indicates that the association is not

navigable towards that end. The redefinition in figure 3.19 does not introduce a new

name into the name space of the Label type: we cannot navigate from Label to

GlassBottle. Navigating from Label to Bottle will yield a set of objects conforming to

Bottle; some may also conform to GlassBottle but that is irrelevant. The association is

being redefined only from the point of view of the sub-type; it has no effect on the

super-type, other sub-types or the destination type. This is the most frequent situation

for redefinitions.

Removing the cross, as in figure 3.20, changes the meaning completely. Now the

association is being redefined at both ends, and glassBottle is introduced into the name

space of Label. We now know that labels are never associated with plastic bottles.

The role name bottle remains in the name space of Label and navigations using that

name are unaffected; they yield a Bottle, not a GlassBottle.

Label

GlassBottle

Bottle

[redefines]

PlasticBottle

Figure 3.20 Redefinition with full navigation

Redefining the sub-type end of the association has an impact on the other sub-types.

Since labels are never associated with plastic bottles, the multiplicity of the Bottle to

Label association is effectively being redefined to be zero for PlasticBottle. This is fine

because [0] is a sub-range of [0..1]. But imagine that the multiplicity of the Bottle to

Label association had been defined to be [1+]. Now, introducing a redefinition like that

in figure 3.20 would produce an invalid model because not all bottles (i.e.

PlasticBottles) can be associated with at least one label.

Another reason for overriding an association is to redefine the associated types. The

new source and destination types must be sub-types of the original source and

destination types. An example is shown in figure 3.21.

Here we want to show that, while all bottles have an association with a label, glass

bottles have an association with paper labels and plastic bottles have an association

with plastic labels. In this construction it is normal to redefine the association with

respect to both ends; it may be navigated in either direction. The role names at both

ends are inherited; for example, the name space of GlassBottle includes the role name

 3.5 Sub-types 73

label and the role name paperLabel. The multiplicity constraints may be changed in a

conformant manner, as described earlier.

GlassBottle

Bottle

[redefines]

PlasticBottle

PaperLabel

Label

PlasticLabel
[redefines]

Figure 3.21 Redefining both ends of an association

As with the preceding examples, the purpose of this kind of construction is

frequently to explain and add information rather than to define new model features.

Unless the sub-types have their own associations with other types, these redefined

associations can never be navigated. A navigation through Bottle using the role name

label can assume only that the object yielded (if any) conforms to Label; it cannot

assume conformance with any of the sub-types. Conversely, an explicit navigation

through GlassBottle using the role name paperLabel will always yield an object

conforming to PaperLabel (if it yields anything at all).

Overriding of properties

The definitions of properties in the super-type are always inherited and their types may

not, in general, be changed, but constraints on them may be added or modified

according to some simple rules. The types of any property parameters must not be

changed.

Type invariants may be overridden in order to be tightened, but not loosened. That

is, if the super-type constraint fails, the sub-type constraint must fail, but not

necessarily vice-versa. The sub-type constraint must imply the super-type constraint.

For example, given that x is a numeric property of the super-type:

Super-type constraint Sub-type constraint OK?

x > 3 x > 4 �
x > 3 x > 2 �

74 Describing structure: adding more detail

These rules are, once again, designed to avoid surprises to observers who think they are

looking at objects of the super-type. An observer who thinks x will always be greater

than 3 will not be surprised to find it is always greater than 4.

The type of an inherited property may be changed in the sub-type where the change

is equivalent to an allowed constraint modification; that is, where the type given in the

sub-type is itself a sub-type of the type given in the super-type. For example, a

property defined to be of type Integer might be redefined by a sub-type to be of type

[0..10], a sub-range (and hence a sub-type) of Integer.

The only sub-typing for value types that we assume to be pre-defined applies to

integers and sets of symbols. For integers, a numeric range n1 conforms to another

numeric range n2 if the starting value of n1 is greater than or equal to the starting value

of n2 and the ending value of n1 is less than or equal to the ending value of n2:

[1..10] conforms to Integer

[1..10] conforms to [0..10]

For sets of symbols, the sub-type set must be a sub-set of the super-type set:

{a b} conforms to {a b c}

For a collection, both the type of the objects in the collection and the possible size of

the collection must obey the above rules.

3.6 The meaning of invariants

Figure 3.22 shows two invariants of a company. The first says that the payCost

property is the same as the sum of the salaries of the employees. The second says that

spouseCost is the same as the sum of the salaries paid by the company to all the

employees whose spouses work for the same company. Notice how self is used in the

set expression to ensure that the spouse works for the same company and to select the

correct employment. Remember that self is bound to the object from which the

navigation expression begins, in this case an arbitrary object conforming to Company.

To understand fully the meaning of logical invariants, such as those in figure 3.22,

we must consider the meaning of comparing two expressions for equality. In general,

two expressions are equal if they yield results of the same type and the two results

match. For example, where expressions yield numbers, the expressions are equal if the

numbers are equal. Equality of objects means equality of their identities, that is, that

they are the same object. Equality of collections means they have the same members;

in the case of sequences they must also be in the same order.

Invariants are assumed to be universally quantified over the type containing them.

So the first invariant for Company in figure 3.22 is equivalent to:

 ∀∀∀∀ c : Company •••• c.payCost = sum c.employment.salary

 3.7 Value types 75

Company

employee employer

Person

Employment

salary : Number
startDate : Date

spouse

spouse
payCost : Number
spouseCost : Number

Invariants:
payCost = sum employment.salary
spouseCost = sum (

{p : employee | self ∈ p.spouse.employer}.
employment(self).salary)

Figure 3.22 More complex invariants

Invariants constraining parameterised properties, such as:

 veryBig(Number): Boolean

 Invariants:

 veryBig(x) = (x > 500)

are assumed to be universally quantified over the parameter type. Here, we are saying

that the invariant holds for all valid values of x, that is:

 ∀∀∀∀ c : Company •••• ∀∀∀∀ x : Number •••• (x > 500) ⇔⇔⇔⇔ c.veryBig(x)

3.7 Value types

At the beginning of chapter 2 we made a strong distinction between object types and

value types. Object types are described using boxes on a type view, value types are the

types given to object properties. In fact, we can, if we so choose, represent value types

on the type view using type boxes. There are two reasons why we might want to do

this.

Firstly, it is sometimes clearer to use graphical notation than textual notation,

particularly when there is a variety of constraints to be considered. Secondly, we can

use the expressive power of type definitions to describe the characteristics of value

types.

In figure 3.23 we represent a value type, Point, using a type box11. We know it is a

value type, and its members are therefore immutable and lack identity, because it has a

value invariant. The lack of identity is further reinforced by the crosses at the Graph

ends of the associations; as before the cross indicates that the association cannot be

navigated in that direction. It is never possible to navigate from a value. The diagram

also shows that value types can still be used to type properties inside the type box, as

11This diagram shows a good example of the difference between derived associations and subset constraints. The
negated plots can be derived by a rule; there is no rule to determine which curve contains which plots.

76 Describing structure: adding more detail

with originOffset, even though they also appear as type boxes. A more detailed

specification of a Point type appears in appendix B.

Graph Point

Point.x : Number
Point.y : Number
Point.negated : Point
Invariants:

value
p.negated.x = -(p.x)
p.negated.y = -(p.y)

X
plot

X
curve1

X
curve2

[subset of]

[subset of]

originOffset : Point

X
negatedPlot

[{p: Graph::plot • p.negated}]

Figure 3.23 A value type

3.8 Summary

• Navigation expressions allow us to express the results of navigating associations.

• Every type has a name space that defines the names which may be used in

navigation expressions.

• Expressions that navigate to many objects yield a set, with no duplicates.

• Expressions that navigate to many values yield a bag, with duplicates allowed.

• Care must be taken that navigation expressions do not compromise

encapsulation.

• An association that can be defined in terms of others is derived. Such

associations are marked with a diagonal bar across them and an explanation of

the derivation alongside.

• Associations where both ends go to the same type are recursive.

• A recursive association that has different role names at each end defines two

separate navigation paths.

• A recursive association that has the same role names and multiplicities at each

end is symmetric and defines only one navigation path.

• Sub-types describe non-disjoint sets of objects when connected to their super-

type by separate extension triangles.

• A type can extend two or more other types.

• A sub-type may override properties and associations inherited from a super-type

provided structural conformance is preserved.

• Logical type invariants are assumed to be universally quantified over the type.

• Value types can be defined in the same way as object types, using type view

notations.

 3.10 References 77

3.9 Bibliographic notes

It is worth noting that quite a lot has been published on adding more detail to the OMT

method (which uses similar notations to those presented here); we referenced one such

source, concerning state types, in the preceding chapter. In particular, the article

[Rumba93] describes a number of ideas related to those in this chapter, but which are

quite different to our approach.

3.10 References

[Rumba93] J. Rumbaugh. Modeling & design: On the horns of the modeling dilemma. Journal of

Object-Oriented Programming 6(7):8–17, 1993.

78

CHAPTER 4

Describing behaviour:
the basics

4.1 Modelling behaviour

Type views give the anatomy of a model; they must be complemented by other views

which describe dynamic behaviour. Unlike some authors, we do not believe it

appropriate to describe behaviour in the world using point-to-point messages between

objects. Our main objection is that such a description over-specifies: it unnecessarily

commits to design decisions. This is most noticeable when several objects must each

react to an occurrence in the world. A message-based description must decide, often

arbitrarily, on the exact order in which the objects will be sent a message notifying

them of the occurrence. By contrast, we describe behaviour directly in terms of events,

and require no artificial sequencing. We say that an event has no duration and is

simultaneously detectable everywhere. This mirrors our view of the world.

In this chapter we consider ways to describe dynamic behaviour of essential models,

our name for models of situations in the world. We want the essential model to

describe all the ways in which the situation can change, by defining all the possible

sequences of events. If a sequence of events can be observed in a particular situation,

the essential model must indicate that the sequence is valid. Conversely, a correct

essential model allows no sequence of events that cannot happen in the situation.

4.2 Events

4.2.1 What events are

Type diagrams tell us about the possible states of a situation, in terms of object

configurations, property values and associations. State types, introduced towards the

end of the last chapter, describe other possible states and we will develop this theme

later in this chapter. To complete the picture we need to consider events, which cause

a situation to change from one state to another.

 4.2 Events 79

Events are a fundamental part of the structure of experience, and so it is difficult to

define them in terms of anything else. Events are the way that information comes into

existence. Without events, nothing would happen. Pieces of information are

associated with events, but we may not be interested in all possible information. Every

event is associated with a date and time, the date and time at the moment the event

occurred, but such information may not be relevant in our model.

From a modelling point of view, events have no duration: either they have not yet

happened or they have already happened; they can never be happening. We can know

that an event has occurred only by detecting its effect on our model. This is true in our

everyday lives as well as in models. One of the authors was recently sitting at home

reading a book when he heard a loud bang outside. His wife asked him to go and see

what it was. Without a thought he rose and went outside to look. Only then did the

literal absurdity of the situation strike him: how can you look for a bang that has

already happened? You can’t, you have to look for consequences of the bang, such as

fallen masonry or dented cars. (In case you are worried, no consequences other than a

change to our memories could be detected.)

When modelling a situation, we are only interested in some of the events, in the

same way that we are only interested in some of the infinity of objects which we might

perceive when observing the situation. Specifically, we are only interested in those

events which cause our model to change its state.

Events are not objects. However, if an event causes our model to change state, the

model carries within it a memory of that event having happened. Sometimes we might

choose to model that memory as an object, created as a result of the event, and named

as though it was the event itself. For example, a marriage event might be represented

as a marriage object. You should distinguish between the event itself, and the object

representing the memory of that event. Here we are talking about the events

themselves; we construct object models to retain the memories of those events in the

way which best suits our ultimate purpose.

The purpose of the essential model is to describe what the possible states of the

system are, what the possible sequences of events are and how the state changes when

the events occur. We consider events to be simultaneously available to all objects in

the system. Any object can change its state in response to any event; sometimes

several objects may change their state in response to a single event. Conversely,

objects change state only as a consequence of events.

4.2.2 Describing events

Every event carries some information. We model the information carried by an event

in two ways:

• the name of the event;

• the parameters to the event.

80 Describing behaviour: the basics

Consider the event described by the following English sentence:

‘The 09:45 train to Cambridge leaves Kings Cross on 17th June 1993.’

Assume that we are interested in this event because we are building an object model

which models, amongst other things, stations and trains. Clearly, this event is one of a

family of similar events, representing departures of trains from stations. We might

describe this event as follows:

depart(‘0945 to Cambridge’, ‘Kings Cross’, ‘17th June 1993’)

where depart is the event name. This is an instance of the event type:

depart(Train, Station, Date)

Here we are assuming that the properties of the Train type include its scheduled

departure time and its destination. Event types are a generic description of a family of

possible events, where each instance of the event carries parameters which are objects

and values conforming to the parameter types.

Alternatively, we might be interested in the actual time at which the train starts to

move out of the station, in which case we might extend the event type with an

additional parameter:

depart(Train, Station, Date, Time)

Another possibility is that we are not interested in the train itself at all, simply in the

station, date and time:

depart(Station, Date, Time)

The way in which we describe an event depends upon the information we need from

that event to maintain our model.

We prefer to use verbs in the present tense for the names of events, because this

helps to avoid confusion with other names. For example, we prefer depart to departed.

Each event type must have a different name.

Event parameters

The parameters to an event can be object types and value types. If a parameter is an

object type, it means that the event carries with it the identity of a particular object.

We don’t say exactly how this happens; designing mechanisms for mapping the

identities of objects in the world to and from the identities of the corresponding

software objects is an important part of the design of a software implementation,

 4.2 Events 81

especially a user interface, which we normally ignore when building essential models1.

State types cannot be used as the types of event parameters. If a parameter is a value

type, it means the event carries that value with it. Again we don’t specify how the

value is determined.

Often the detection of an event will cause the creation, in the model, of a new

instance of some object type. A frequent error is to suggest that the event should carry

the identity of the new instance as a parameter. This is not possible because the new

instance (and hence its identity) does not exist until after the event is detected. The

correct parameter for the event would be the identity of an existing object which will

participate in an association with the new object.

Objects commonly use an event’s parameters to determine whether they are

interested in it. For example, for an event:

turnOn(s: Switch)

it is likely that only the switch s is interested in that event. However, if we had a row

of radio buttons constrained so that only one could be on at any one time, an event

which turned one of them on might also cause another to turn off. We use statecharts,

described shortly, to specify these behaviours accurately.

An event parameter can be multi-valued; for example, its type might be:

set of Number

meaning that the parameter is an unordered collection, with indeterminate size, of

numbers.

4.2.3 Initial object configurations

Consider the type view of an essential model shown in figure 4.1. When an instance of

this model first comes into existence, what objects are in it? Should we assume a

starting condition where no objects exist?

We require that there must be an initial configuration of objects deemed to exist at

the moment of model creation. Further, there must be a type in the model that will

only ever have one instance, and that instance must be part of the initial object

configuration. This object is called the initial object, and its type the initial type. All

the objects that make up an instance of a model must be reachable by navigation from

the initial object. In fact, we define an instance of a model to be an initial object and

the objects reachable from it.

1This matter is discussed further in chapter 11.

82 Describing behaviour: the basics

Company

employee employer

Person salary : Number

Department

name : String
Invariants:

unique name
const name

name : String
Invariants:

const name

member

[1+]
name : String
Invariants:

const name
location.company ⊆ employer
“The locations a person works in must
be associated with the person’s
employers”
∀ s : salary • s > 0
“A person cannot have salary less
than or equal to 0”

location

Figure 4.1 Type view for the company–employee example

Assuming that we intend to create more than one Company object, there is no type

in figure 4.1 that can act as the initial type; we must introduce one. We decide that this

type will be RegistrationOffice, and the single instance of this type represents the office

with which all companies must be registered. If we discovered a need for more than

one registration office, perhaps responsible for different geographical areas, we would

need to introduce a different initial type, perhaps one whose single instance represents

the country’s government. The new type view is shown in figure 4.2.

Registration
Office

address : String
Invariants:

const address

Company

employee employer

Person
salary : Number

Department

name : String
Invariants:

unique name
const name

name : String
Invariants:

const name

member

[1+]

name : String
Invariants:

const name
location.company ⊆ employer
“The locations a person works in must
be associated with the person’s
employers”
∀ s : salary • s > 0
“A person cannot have salary less
than or equal to 0”

location

Figure 4.2 Type view with initial type

We have distinguished the initial type by giving it a thicker border. In a complete

model there will always be exactly one type so distinguished, but it is perfectly

 4.2 Events 83

permissible not to have decided about this yet, and so not to have selected an initial

type yet. The selection of the initial type may sometimes be difficult and can have

important consequences on the model. For example, in this model we can deduce the

need for the [1+] constraint on the association from Person to Company. If a Person

object had no employer it could not be reached by navigation from the initial object; to

support people without an employer we would need to introduce an association

between Person and RegistrationOffice, representing knowledge by the registration

office of all people eligible for employment.

By introducing the concept of an initial object we have greatly simplified the

interpretation of treating type names as the set of objects conforming to the type, an

idea introduced in chapter 3. For example, with reference to figure 4.2, the word

Person represents not only an object type but also the set of objects conforming to the

type that are reachable by navigation from a particular RegistrationOffice.

Associations connecting the initial type will always feature a diamond at the initial

type end because we have no concept of objects moving from one instance of the

model to another.

The simplest initial object configuration is now a single instance of the initial type,

RegistrationOffice, as in figure 4.3.

(RegistrationOffice)
[address = ‘Buck House, London’]

Figure 4.3 A simple initial object configuration

How was the address of the registration office established? We say that the initial

object configuration is the consequence of instantiating the initial type. With essential

models, being models of the world, it is not meaningful to discuss how that

instantiation took place; in a model of software we would say that the instantiation is

the result of running a program.

A consequence of defining an initial object configuration is that it enables us to

require that all events have at least one object type parameter. Here, we might

envisage an event:

createCompany (RegistrationOffice, String)

that creates a new company2. Although we restrict the initial type to have only one

instance, we still provide it as a parameter because it gives us a way of identifying

existing objects in the model. It allows us, in this case, to write a logical expression

showing that the new company becomes a member of the registration office’s company

2The String parameter is required to provide the company’s name.

84 Describing behaviour: the basics

association, as we will show later in this chapter. It also makes it easy to change the

model in the future.

It is never necessary to have an initial object configuration larger than a single

object, but it is often desirable. It isn’t necessary because we can always define events

that cause the creation of other objects, as with the creation of companies in this

example. If the situation requires us to have events for the dynamic creation of

particular types of objects anyway, it seems pointless to place some instances of these

types in the initial configuration; they can always be created using the defined event.

But when we really do have a static arrangement of objects that includes the initial

object, denoted on type views by aggregation constraints at both ends of associations, it

is sensible to define the static configuration as the initial object configuration.

4.2.4 Discovering events

If we already have a type view, an excellent way of discovering some of the events is

by systematically considering the object types and their associations. For each type,

consider how an instance of the type is created, and how it is destroyed. For each

association, consider:

• how an instance of it is created;

• how an instance of it is destroyed;

• in the case of an ordered association, how its order is established or changed.

The answer in each case is an event, except when objects and associations exist as part

of the initial object configuration.

Referring back to figure 4.2, we can deduce that the following event types are

needed to create and destroy objects and establish and remove instances of the

associations:

createCompany(RegistrationOffice, name: String)

createDepartment(Company, name: String)

destroyCompany(Company)

destroyDepartment(Department)

addEmployee(Company, name: String, salary: Number)

employ(Company, Person, salary: Number)

leave(Person, Company)

allocate(Person, Department)

deallocate(Person, Department)

Note that Person objects are created only as part of their becoming employees.

 4.2 Events 85

The event parameters are always the minimum set that specifies everything

necessary. We do not have an event type:

allocate(Person, Department, Company)

because the company information is redundant: the department is associated with only

one company.

The technique of examining object and association life-times, although an essential

part of the discovery process, will not necessarily find all of the events for a model.

Other events are needed for those state changes within objects which do not affect any

of the associations on the type diagram. These events are discovered by carrying out a

detailed analysis of individual object types. For example, all non-constant properties

must be able to be changed by at least one event – otherwise, why are they not

constant? In this example, we will need an event to change salaries.

4.2.5 Event validity

Imagine we have an instance of the model shown in figure 4.2 whose current state is

represented by the object diagram in figure 4.4. We have given the objects symbolic

‘names’, such as R and C1, so that they can be referenced in events. What events could

happen next?

(RegistrationOffice)
[address = ‘Buck House, London’]

R

(Company)
[name = ‘abc Ltd’]

C1

(Company)
[name = ‘xyz Co’]

C2

(Person)
[name = ‘Mary’]

P1

(Department)
[name = ‘accounts’]

D1

salary = 20000

Figure 4.4 Instance of the company–employee model

If an event could happen we say it is valid. Event validity is a complicated subject,

and is studied at some length in this book, both here and in chapters 5 and 6.

86 Describing behaviour: the basics

Events might be invalid for one of three reasons:

1. erroneous parameters;

2. invalid parameters;

3. model in wrong state.

We will deal with each of these in turn.

Erroneous parameters

An event parameter is erroneous if it is of the wrong type or, in the case of object type

parameters, if it is an object identity unknown in the model. Referring to the list of

event types given above and figure 4.4, the event:

createDepartment(C1, 20)

is invalid because the second parameter is erroneous: it should be a string. Likewise,

the event:

createDepartment(C3, ‘personnel’)

is invalid because the first parameter refers to an unknown company. In practice, we

always assume that parameters will not be erroneous in this way. We just say that

events with erroneous parameters can never occur.

Invalid parameters

An event is invalid if its parameters, taken together, would, whenever the event

occurred, have the effect of violating a model constraint. For example, the event:

addEmployee(C1, ‘Peter’, -20)

cannot occur because the third parameter, the salary, violates the constraint that salaries

must be greater than 0. A rather more subtle example is:

allocate(P1, D1)

In this case, the event is invalid and could not occur because person P1 does not work

for the company with which D1 is associated. The event would, therefore, violate the

type invariant concerning these associations defined in Person.

Model in wrong state

As we saw in chapter 2, some objects have defined states which they enter and leave

during their life-times. There may be constraints that certain events can occur only

when objects to which they relate are in certain states. This means that the validity of

 4.2 Events 87

an event cannot be determined merely by examining the type view and the event

parameters.

Company

name : String
Invariants:

unique name

Private Public

Figure 4.5 State types

Consider the enhancement to our example model shown in figure 4.5. A Company

can be either Private or Public in its ownership. There might be two extra events:

goPublic(Company)

goPrivate(Company)

A company that is already public cannot go public again, so a goPublic event is invalid

and cannot occur if the company specified in its parameter is already in the Public

state. Similarly, a goPrivate event cannot occur if the company is already in the Private

state.

It is clear, therefore, that to determine whether a particular event can occur we need

to know the current state of the objects to which the event relates.

4.2.6 Pre-conditions

For each event type we can write down, in natural language, the conditions which must

exist for it to occur. This is a useful exercise in its own right, and may also be used as

a precursor to more formal specification of pre-conditions.

As we have already seen, pre-conditions fall into two categories: constraints on the

event parameters, and constraints on the model. These categories correspond to the

‘invalid parameters’ and ‘model in wrong state’ cases above.

Using the events introduced above as examples, the pre-conditions might be

expressed as:

addEmployee(Company, name: String, salary: Number) The salary must be greater

than 0.

88 Describing behaviour: the basics

allocate(p: Person, d: Department) The person p must work for

the company owning the

department d.
goPublic(c: Company) The company c must not

already be public.

Irrespective of their category, all pre-conditions have the same effect of defining which

events may occur. An event not meeting the pre-conditions just cannot happen.

4.2.7 Consequences

The consequence of an event is usually to change the state of the model in some way.

We can write down, in natural language, the consequences of an event. If these

consequences are conditional we should make this clear. Once again, this is a useful

exercise in its own right, and may also be used as a precursor to more formal

specification of consequences.

For the events we are considering here, we might express the consequences as:

addEmployee(c: Company, n: String, s: Number) A new Person object is created,

with n as their name, employed by

company c, and earning s.
allocate(p: Person, d: Department) The person p is associated with the

department d.
goPublic(c: Company) The company c moves into the

public state.

4.2.8 The event table

It is often convenient to document all of the event types in a system using an event

table. For the essential model, this has five columns, as shown below:

Name Object

parameters

Value

parameters

Pre-conditions Consequences

The name of

the event

type

Types of the

object

parameters,

with optional

formal name

Types of the

value

parameters,

with optional

formal name

Description of

conditions

that must exist

for the event

to occur

Description of

changes to the

model that

result from the

event

An additional column containing an informal comment is often useful in addition to

those shown above.

 4.2 Events 89

4.2.9 Event scenarios

As we have seen, not all events can occur at all times. Events can occur in only

specific orders. We can produce examples of these sequences, which we call event

scenarios. An event scenario is a sequence of specific event instances; it shows just

one of the many possible sequences of events that could occur.

In essence, an event scenario is just a list of event instances, where each event

instance is specified by its type and the values of its parameters. In many cases the

event parameters will be identities of objects, which we must represent symbolically.

Imagine we have just created an instance of the company–employee model, and have

an initial object configuration as in figure 4.3, with the RegistrationOffice object known

symbolically as R.

Consider the event sequence:

createCompany(R, ‘abc Ltd’)

createCompany(R, ‘xyz Co’)

This sequence creates two new companies. We can draw an object diagram to show

the state of the model at this point. The new objects are given symbolic names that can

be used in the rest of the scenario. The state of the model after the two events above is

as shown in figure 4.6.

(RegistrationOffice)
[address = ‘Buck House, London’]

R

(Company)
[name = ‘abc Ltd’]

C1

(Company)
[name = ‘xyz Co’]

C2

Figure 4.6 Model after first two events

Now we can continue the scenario to show an employment:

addEmployee(C1, ‘Mary’, 2000)

This gives a new model as in figure 4.7.

By combining the list of events with object diagrams we can describe quite complex

scenarios. But these are still only examples. Ideally, we want a precise way of

describing all possible scenarios. We will consider this issue next.

90 Describing behaviour: the basics

(RegistrationOffice)
[address = ‘Buck House, London’]

R

(Company)
[name = ‘abc Ltd’]

C1

(Person)
[name = ‘Mary’]

P1

salary = 20000

(Company)
[name = ‘xyz Co’]

C2

Figure 4.7 Model after third event

4.3 Describing behaviour with objects

Other authors [for example Marti91] have defined notations for generic event

scenarios, or event schemata. The schemata give a model-wide description of

behaviour, often with considerable detail. These schema notations exist alongside

object-based descriptions of structure, and the relationships between the two are often

tenuous. The value of such schemata is in their ability to represent patterns of

behaviour observed in the world that act on several different objects over time.

We do not wish to have generic representations of behaviour that are unassociated

with specific objects. To use objects to represent structure but not to localise

behaviour is, we think, to miss the point about object-oriented techniques. We can

achieve the benefits of event schemata by introducing additional objects to the model,

objects whose states represent stages in a pattern of behaviour. It is most certainly

correct to use objects as abstractions of process as well as abstractions of state.

The remainder of this chapter is devoted to a description of techniques to allow the

precise definition of event validity and consequences. The techniques focus on the

effect of events on one specific type object, not on the model as a whole. A picture of

the whole can be built up from the parts, but, more importantly, the objects to be

modelled can be chosen so that their life histories correspond directly to our

understanding of processes in the world.

4.4 States

Events can only occur in particular sequences. The sequences are constrained

according to the realities of the situation under consideration. For example, a light

switch has two events associated with it, turnOn and turnOff. If at any moment we

 4.4 States 91

wish to know which of these two events will occur next, we must know whether the

switch is currently on or off, the two stable states of a simple switch. If the switch

starts in the off state, the only possible sequence of events is [turnOn, turnOff, turnOn,

turnOff, ...]. Other sequences, such as [turnOn, turnOn], cannot happen. We could draw

a simple diagram to describe this situation, as in figure 4.8.

Off On
turnOn

turnOff

Figure 4.8 Simple state machine

In principle, every different set of property values taken by an object represents a

different state. Usually this means an object has an infinite number of states, because

the domain of at least one property, such as a number, will be infinite. In practice, we

choose to model explicitly only those states which distinguish the possible orderings of

events, or which relate to dynamically acquired properties and associations. For

example, imagine a bottling plant where bottles are filled and capped. The bottles

might be described by the object type shown in figure 4.9.

Bottle

capacity : Number
content : Number

Figure 4.9 The Bottle type

Objects of this type have an infinite number of sets of property values, but we can

describe the life-history of a bottle using just three, as in figure 4.10.

Empty Full
fill

Sealed

cap

Figure 4.10 State changes for a bottle

92 Describing behaviour: the basics

The Empty state in figure 4.10 represents a whole set of property values where

content < capacity. This diagram gives a precise definition of the possible event

sequences. There is just one: [fill, cap].

4.5 Statecharts

The diagrams presented above are examples of finite state machines, a technique with

a long and mostly respectable history in computer science. A finite state machine

depicts the interesting states of a system and the possible transitions between them, in

the form of a directed graph. Finite state machines are useful ways of representing the

behaviour of objects because they have a memory (their current state) in the same way

that objects do. We say ‘mostly respectable’ because they have one well-known

drawback: their complexity increases exponentially with the complexity of the system

being described. For finite state machines to be useful we must find ways of

controlling their complexity.

It would be possible to draw a single state machine to describe the entire world

situation being modelled, but the inevitable size of such a machine might well make it

unusable. Instead, we allow each object type to be described by a separate state

machine and define the state model of the situation to be the combination of the

separate machines, which might well overlap in their coverage, according to some

specific rules. It is this separation into separate machines for each object type that is

our major and most powerful weapon in the battle against the inherent complexity of

finite state machines. It is also strategic in our aim of breaking down a complex model

into a number of self-contained, potentially reusable, parts.

The other weapon against complexity is the use of a more powerful visual

formalism than that commonly used for state machines: the Harel statechart notation

[Harel87]. This formalism supports nested states and orthogonal machines, as

described below.

Statecharts, as described in the rest of this chapter and the next, meet many different

needs. Their primary role is to hold a state machine, drawn in a form similar to figure

4.11, that describes the way an object of a particular type moves between a finite set of

distinguished states. Some objects have more interesting state changes than others;

some may exhibit no event ordering limitations at all, and hence do not require a state

machine. However, statecharts also allow the description of much other important

information, with the result that it is impossible to provide a complete description of an

object type without drawing a statechart for it.

Statecharts capture the following information:

• a list of the events of interest to an object type;

• a finite state machine;

• details of object creation;

• constraints on the validity of events;

• descriptions of event consequences.

 4.5 Statecharts 93

As we mentioned above, an object may not be interested in all defined events, so its

statechart will describe only the events in which it is interested. Since an event is

interesting in a situation only if it affects the state of the situation in some way, it

follows that every event defined must appear on at least one statechart, and may appear

on several or all.

4.5.1 Statechart elements

Each state in a statechart, including the whole statechart itself, is shown as a rounded-

rectangle (state box). A state box may be divided into up to three sections.

name part

body part

textual part

Figure 4.12 Statechart elements

Unused sections are omitted. The name of the state is shown inside the name part,

which is separated by a horizontal line from the remaining contents. The entire

statechart is actually a state, with its name the same as the related type name. State

names must be unique within the statechart. The textual part is separated from the

body part by a solid line, not necessarily horizontal.

4.5.2 The event list

Figure 4.13 shows a statechart for a bottle in the situation discussed earlier. The

textual part of the statechart contains a list of the events in which the bottle is

interested; we call this list the event list. Event lists can appear only in the textual part

of the outermost state. The list of events in the event list is not necessarily the same as

the list of events with the Bottle type as a parameter.

Each entry in the event list gives the full signature of an event type, including

formal parameter names for each parameter (b in figure 4.13). When an event is

shown against a transition on the state machine, only those formal parameter names

needed to describe the transition are shown; the formal parameter names have been

omitted from all the transitions in figure 4.13.

94 Describing behaviour: the basics

Bottle

Empty Full
fill

Sealed
cap

Events:
fill (b : Bottle)
cap (b : Bottle)

Figure 4.13 Bottle statechart

4.5.3 Transitions

How should we interpret this statechart? It shows three states, Empty, Full and Sealed.

Our convention is to begin state names with upper-case letters. The arrow with a black

circular tail shows the Empty state to be the initial state for objects of this type. When

a new bottle object is created it enters this state. Bottles are interested in two events:

fill and cap. Both events carry the identity of a bottle as a parameter. The transition

between Empty and Full shows that the fill event takes a bottle from the Empty to the

Full state; a cap event takes a bottle from the Full to the Sealed state. A transition is

triggered when the event labelling it occurs.

Remember that the essential model, of which this statechart is a view, describes

facts about the situation being modelled. There is no transition labelled with ‘cap’

leaving the Empty state; therefore it is a ‘fact’ that, for any newly created bottle b, the

event sequence [cap(b)] cannot occur. What would it mean if we did observe such a

sequence? It would mean, simply, that the situation being observed was not a bottling

plant, according to this model. Event sequences in the world can never be erroneous;

either they occur or they don’t and, if they do, our model must allow for them. So, not

drawing a transition for an event from a state is making just as important a statement as

drawing one: it is saying that the event never happens in that state. The following is

our basic rule of event validity in statecharts:

Events can occur only if they can trigger a transition.

We call any event sequence that can occur in a situation a valid event sequence.

 4.5 Statecharts 95

4.5.4 Nested states

Let us enhance the statechart by adding two extra events, as shown in figure 4.14: the

break event occurs when a bottle breaks while being filled or waiting to be filled; the

reset event occurs when a bottle is emptied and returned to the beginning of the

production line. The diagram shows how the bottle’s state is changed by these events.

Notice that a reset event can occur when a bottle is empty. We call transitions that

start and end with the same state self-transitions.

Bottle

Empty Full
fill

Sealed
cap

Events:
fill (b : Bottle)
cap (b : Bottle)
break (b : Bottle)
reset (b : Bottle)

Broken

break

break

resetreset

Figure 4.14 Statechart with extra events

We can use one of the two major advances provided by the statechart notation, the

concept of nested states, to reduce the number of transitions in figure 4.14. The

revised statechart is shown in figure 4.15.

A new state has been introduced, called InProgress, which nests the Empty and Full

states. A transition leaving this state, like the one labelled break, applies to all the

nested states. The reset transition is similar, except that it ends at one of the nested

states. We now need two initial state arrows, one showing the initial state at the outer

level, another showing the initial state within the nesting. If we had a transition whose

destination was the InProgress state, the initial state arrow would tell us which of the

nested states was to be entered. What we really have here are two state machines: one

with the states InProgress, Broken and Sealed, another with the states Empty and Full.

Any state may contain a nested machine.

96 Describing behaviour: the basics

InProgress

Bottle

Empty Full
fill

Sealed
cap

Broken

breakreset

Events:
fill (b : Bottle)
cap (b : Bottle)
break (b : Bottle)
reset (b : Bottle)

Figure 4.15 Nested states

In figure 4.16, an additional transition for the break event has been added from Full

to a new Leaking state. This illustrates a possible conflict: the state Full now has two

transitions leaving it for the break event, one direct and the other by virtue of the

nesting. We allow this, and say that, when there is a choice, the innermost transition is

triggered; in this case, the direct transition3.

InProgress

Bottle

Empty Full
fill

Sealed
cap

Brokenbreak

reset

break

Events:
fill (b : Bottle)
cap (b : Bottle)
break (b : Bottle)
reset (b : Bottle)
drain (b : Bottle)

Leaking

drain

Figure 4.16 Alternative paths

3It would not, of course, be valid to have more than one transition for an event at the same level of nesting, unless
they were guarded (see page 98).

 4.5 Statecharts 97

4.5.5 Correspondence between the state and type views

The states in a statechart must correspond directly to any state types in the type view.

State nesting is depicted in a type view by showing the nested states as sub-types of the

enclosing state type. The type view corresponding to figure 4.16 is shown in figure

4.17.

Bottle

capacity : Number
content : Number

InProgress Broken Sealed

Empty Full

Figure 4.17 Type view correspondence

It is not necessary to show all states as state types in the type view; usually, only

those needed to show state-dependent properties and associations are included. We

can even omit enclosing states, such as InProgress in figure 4.17, provided the

resulting state type structure does not conflict with the statechart. The rule is that all

state types connected to their super-type via the same extension triangle must be

mutually exclusive.

4.5.6 Pre-conditions

Earlier in the chapter we introduced the idea that events are subject to pre-conditions.

That is, there may be circumstances in which an event cannot validly occur. We have

already seen how statecharts show one kind of pre-condition, the kind that requires

objects to be in particular states. Pre-conditions of this sort are given directly by the

state machine: if no transition exists for an event, the event cannot occur.

In our earlier example of companies and employees we noted another kind of pre-

condition, one that limited the values of event parameters. We use logical expressions

in the event lists of statecharts to show these pre-conditions. For example, the event

list of the Company statechart might contain a pre-condition for the addEmployee event

described on page 87, requiring that the salary be greater than 0.

98 Describing behaviour: the basics

The event list entry would take the form:

addEmployee(c: Company, name: String, salary: Number) [salary > 0]

The pre-conditions are shown after the event signature, enclosed in square brackets.

Similarly, the event list of the Person statechart might contain the following entry:

allocate(p: Person, d: Department) [d.company ∈∈∈∈ employer]

 ‘The person p must work for the company owning the department d’

These logical predicates express the conditions under which the event may occur,

subject to any other restrictions in the body of the statechart. Pre-condition expressions

can use any names in scope for the type; thus they can, in fact, be expressions that do

not mention any event parameters, but this is unusual.

4.5.7 Guards

Now let us consider a simple version of our bottle example, where we deal only with

the filling of the bottles. Perhaps the filling of a bottle can be considered, at a more

detailed level, as a series of squirts of liquid into the bottle. The fill event is replaced

by a sequence of squirt events, where each squirt event has an associated numeric

parameter, being the volume of liquid squirted. It is possible to define, generically, the

number of squirt events which occur before the bottle enters the Full state, as shown in

figure 4.18.

Bottle

Empty Full

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number)

squirt(n) [content + n < capacity]

Figure 4.18 Guards

The transitions in this statechart have guards. A guard is a logical predicate that

must be true when the event occurs if the transition is to be taken. By using guards we

 4.5 Statecharts 99

can have more than one transition for the same event leaving a single state. Here we

use guards to show that squirt events which occur when the bottle has unused capacity

do not cause a transition to the Full state, while the squirt event which fills the bottle

will do so. Guard expressions can use any names in scope for the type plus state

names.

A statechart whose guards allow more than one transition to be triggered by a single

event is badly specified.

In figure 4.18 the logical or of the two guards is true. That is, one of the two guards

is guaranteed to be true. This doesn’t have to be the case. Imagine the guard on the

transition from Empty to Full reads:

squirt(n) [content + n > capacity]

Now neither guard is true when content + n = capacity. In line with our rule that every

listed event of every valid sequence must cause a transition in the statechart, we can

deduce that, in the situation being modelled, no squirt event will ever exactly fill the

bottle. The guards are now acting as pre-conditions. Not only are they specifying the

correct state change but also the conditions under which a squirt can occur.

Guards, then, can be used for two purposes. When the logical or of the guards for

an event leaving a state is true, the guards are selecting a path through the machine.

When the logical or is other than true (for example, when there is only one guarded

transition for the event), the guards are acting as pre-conditions as well.

All pre-conditions could be shown as guards on transitions. But this complicates

the body of the statechart, and has important consequences when we later consider the

relationships between the essential, specification and implementation models.

Therefore, we recommend that, whenever possible, pre-conditions be specified in the

event list. However, there are some pre-conditions, particularly those dependent on

particular states, that cannot be shown in the event list.

From this point on in the book, we will use the term pre-condition to denote those

logical predicates in the event list that limit the conditions under which an event is

valid. We will continue to refer to guards acting as pre-conditions simply as guards.

4.5.8 Statechart as state

It is not a coincidence that the graphical representation of the outside of a statechart is

the same as that of a state within it. In fact, the whole statechart represents a state of

the object, a state enclosing all others. We might think of this super-state as the state

of existence; when an object is created it is in the state represented by the statechart as

a whole.

We can sometimes use the statechart as a state to simplify our diagrams. Figure

4.19 shows a statechart for Bottle that uses the statechart as an enclosing state to reduce

the number of transitions.

100 Describing behaviour: the basics

Bottle

Empty Full

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number)
drain (b : Bottle)

squirt(n) [content + n < capacity]

drain

Figure 4.19 Statechart as state

A drain event has been introduced, which always results in the bottle become empty.

We could have drawn this with two transitions, one from Full to Empty and a self-

transition on Empty. Instead, we have drawn a single transition starting at the edge of

the statechart. Using the statechart as a state is strictly a shorthand for drawing a new

state box inside the statechart and attaching the transitions to that.

4.5.9 Allowed events

There is yet another way of drawing the Bottle statechart of figure 4.19. In the textual

part of the statechart we can specify that certain – or all – events are to be allowed if

they are accepted by the event list but don’t cause a transition. We have done this in

figure 4.20.

By indicating that we wish to allow the drain event we are saying it is acceptable in

any state; sometimes it will cause a transition, otherwise it will be ignored. Allowing

an event is equivalent to:

• including an unguarded self-transition for the event for every state without an

existing transition for the event; and

• including a guarded self-transition for all states with one or more existing

guarded transitions for the event, with the guard set to be the logical ‘not’ of the

logical ‘or’ of the existing guards.

The special ‘allow’ entry <all> is permitted, meaning all the events in the event list.

The facility to allow events is particularly useful because an allow statement can be

included in the textual part of any state, not just the outermost one. An allow statement

applies to the state in which it appears plus any nested states.

 4.5 Statecharts 101

Allowing an event does not bypass any pre-conditions. If pre-conditions are given

in the event list they must hold even if the event will be allowed4.

Bottle

Empty Full

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number)
drain (b : Bottle)

squirt(n) [content + n < capacity]

drain

Allow:
drain

Figure 4.20 Allowed events

4.5.10 Event sequence validity

Having now introduced pre-conditions and allowed events, we can attempt a better

definition of event sequence validity.

Every event in a valid event sequence that appears on the event list of a

statechart must satisfy the pre-conditions (if any) and must cause a transition or

be allowed.

An event sequence is valid for the model as a whole if and only if it is valid for all

statecharts in the model.

A more complete and precise definition will be given later in the next chapter.

4.5.11 Post-conditions

Refer back to figure 4.18. To complete the description we ought to show that the

content property has a new value after a squirt event. We do this by specifying post-

conditions. A post-condition is a logical expression that is true after the event has

occurred. Post-conditions formalise the textual consequences we discussed earlier, on

page 88. The name space for these expressions is the same as that for guards. Since

we frequently wish to describe a change in a property, we need a way of referring both

4This means there is a subtle difference between specifying a pre-condition in the event list and specifying the same
condition using a guard. Pre-conditions are never affected by ‘allow’s, but guards can be bypassed by them.

102 Describing behaviour: the basics

to the value of a property before the event and the value of the property after the event.

We append a prime character (’) to the property to mean the new value of the property,

the value after the event. Post-conditions have been added to the statechart in figure

4.21.

Bottle

Empty Full

squirt(n) [content + n >= capacity] / [content' = content + n]

Events:
squirt (b : Bottle, n : Number)

squirt(n) [content + n < capacity] / [content' = content + n]

Figure 4.21 Post-conditions

The post-conditions are shown on the transitions, after the event name and guards,

and after a separating ‘/’ character. As with guards, they are enclosed by ‘[]’.

As a shorthand, post-conditions which always apply whenever an event causes a

transition can be shown in the event list, as in figure 4.22. Such post-conditions will

hold even if the event is ‘allowed’.

As a general rule, post-conditions should not assert state changes in any object other

than self. If an event causes a change in state of many objects the changes should be

described separately for each object, on the appropriate statechart.

Bottle

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number) / [content’ = content + n]

squirt(n) [content + n < capacity]

Empty Full

Figure 4.22 Factoring post-conditions

 4.5 Statecharts 103

4.5.12 Creation operations

Objects are dynamically created and destroyed during the life-time of a situation.

When we design state views we need to show how events change the state of the

situation, including the creation and destruction of objects. At the time of creation a

new object will typically take on properties and form associations using information

already in the model or carried with the event. We need a way of showing how this

information is made available to the new object. We do this by defining creation

operations.

The act of object creation in the model, to be described shortly, invokes a creation

operation. An object of a particular type cannot be created unless that type has a

creation operation defined5. The simplest kind of creation operation is one that takes

no parameters. For some types, we will want to define more sophisticated creation

operations that have parameters, where the parameters represent information being

made available to the object on creation. A type may have any number of these

creation operations, distinguished by their parameter signatures. Creation operations

do not have names; they are described by their parameter signatures.

We can attach post-conditions to the initial state arrow of the statechart, showing the

initial values taken by properties (and associations) of the object created. In figure

4.23 we have defined a creation operation for bottles that takes a single numeric

parameter and uses it to specify the value for the capacity property. It also specifies an

initial value of 0 for content.

Bottle

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number) / [content’ = content + n]

Creation:
(c : Number)

squirt(n) [content + n < capacity]

Empty Full

(c) / [content’ = 0 ∧ capacity’ = c]

Figure 4.23 Creation operation

As you can see from figure 4.23, creation operations are listed in their own section

within the outermost textual part of the statechart; again, formal parameter names are

5We might assume that an intelligent tool will automate the definition of creation operations.

104 Describing behaviour: the basics

given so that they may be referenced in the body of the statechart. Clearly, property

and association names used in creation post-conditions must always be followed by a

prime character, because they did not exist before the object was created.

As with other post-conditions, we can move the creation post-conditions into the

textual part. In figure 4.24 two different creation operations for bottles have been

specified, one that defines a default value for capacity. The post-conditions for each

are specified separately.

Bottle

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number) / [content’ = content + n]

Creation:
(c : Number) / [content’ = ∧ capacity’ = c]
() / [content’ = 0 ∧ capacity’ = 200]

squirt(n) [content + n < capacity]

Empty Full

Figure 4.24 Multiple creation operations

An alternative to figure 4.24 would have been to show two explicit initial state

arrows, one for each creation operation, labelled with the parameter signatures. We

normally do that only when we want to point the arrows at different states: different

creation operations may cause the object to adopt different initial states. We can even

put guards on initial state arrows, to select a starting state depending on a creation

parameter. An example of this is shown in figure 4.25. Such guards can reference

only the formal parameter names of the creation operation, never the state of the object

(because it has not yet been created).

Neither guards nor post-conditions can be attached to initial state arrows that appear

inside enclosing states to indicate which of the enclosed states is the default, such as

the one shown in figure 4.15.

The primary definition of creation operations is on statecharts. However, we can, if

we wish, reproduce the signatures of creation operations on the type view. They are

shown in the appropriate type box, under their own heading, as shown in figure 4.26.

Formal parameter names are not needed.

 4.5 Statecharts 105

Bottle

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number) / [content’ = content + n]

Creation:
(c : Number, f : Boolean) / [capacity’ = c]

squirt(n) [content + n < capacity]

(c, f) [not f] /
[content’ = 0]

(c, f) [f] /
[content’ = c]

Empty Full

Figure 4.25 Alternative initial states

Bottle

capacity : Number
content : Number

Creation:
(Number)
()

Figure 4.26 Creation operations on type view

4.5.13 Creating objects

Post-conditions can be used to show that a consequence of an event is the creation of

one or more new objects. Consider the type view in figure 4.27.

Manufacturer
product maker

Bottle

capacity : Number
content : Number

Creation:
(Number)

Figure 4.27 Type view for bottle–manufacturer example

Imagine there is an event

makeBottle(m : Manufacturer, c : Number)

which occurs when a new bottle is made. The post-condition of this event is that a new

bottle object, with capacity c, exists. We can write this as in figure 4.28.

106 Describing behaviour: the basics

Manufacturer

Production

Events:
makeBottle (m : Manufacturer, capacity : Number)

Creation:
()

makeBottle(capacity) / [new Bottle(capacity)]

Figure 4.28 Object creation

The diagram shows how creation operations are invoked. For any type X, the

expression:

new X

will yield a new object conforming to type X, having invoked a creation operation with

no parameters. Parameters may be specified to select particular creation operations6.

The use of expressions containing new is the only way of formally indicating the

creation of objects. When we show the creation of an object in our models, we

indicate the most specific type to which the object must conform.

In figure 4.28, we could write the post-condition in the event list. This would leave

a degenerate body, with a single state and only unguarded self-transitions with no post-

conditions. Such degenerate bodies can be omitted altogether. The absence of a body

but the presence of an event list implies a single, unnamed, state with unguarded self-

transitions for each event in the list.

4.5.14 Creating associations

Although figure 4.28 shows the creation of a new bottle object, it does not show that

the new object becomes associated with the manufacturer. We do this in figure 4.29.

6In the essential model, which we are considering here, the idea that a new object is ‘created’ needs consideration.
What we really mean is that an object previously unknown in the situation has now become known in some way and
can subsequently be referenced by its identity.

 4.5 Statecharts 107

Manufacturer

Production

Events:
makeBottle (m : Manufacturer, capacity : Number)

Creation:
()

makeBottle(capacity) / [product' = product ∪ {new Bottle(capacity)}]

Figure 4.29 Creating an association

In the post-condition expression, product represents the set of bottles yielded by

navigating the association to Bottle before the event and product’ represents the set of

bottles after the event. The new set is equal to the old set with the addition of a new

bottle7.

Although we have asserted in figure 4.29 that the new bottle is a member of the

manufacturer’s product set, we have not explicitly asserted the logical implication that

the manufacturer is the maker of the new bottle. We could do so by passing the

identity of the manufacturer as an argument to the bottle’s creation operation and

showing the consequential value of the bottle’s maker association as a post-condition.

Do we need to do that? Our position is that it is unnecessary. Either an association

exists, and can be navigated freely in both directions, or it doesn’t, and asserting the

existence of the association from just one end is enough (although asserting it from

both ends is not wrong, just unnecessary)8.

It is useful to contrast this approach with the rule given earlier that each object

should specify its own changes in state, on its own statechart. Value-typed properties

belong to a single object, and managing their states is logically the responsibility of the

owning object; associations belong equally to the two objects being associated, and can

be managed from either end.

Creating initial object configurations

When the initial object configuration consists of more than one object, we can describe

the configuration required by including object and association creations in post-

conditions of the creation operation of the initial type.

7A more concise, but less rigorous, post-condition would be:

 [new Bottle(capacity) ∈∈∈∈ product']

8You will recall from chapter 2 that we consider an association to be a pair of logically related functions. Given the
result of one function we can deduce the result of the other. It is therefore unnecessary to define the results of both.

108 Describing behaviour: the basics

4.5.15 Finalisation

Some events will result in objects that were previously known in the situation

becoming unknown. We can think of this as object destruction or finalisation.

Extending our earlier statechart for bottles, we might want to model the fact that

bottles leave our sphere of interest when they are packed (in a container). Figure 4.30

shows this.

Bottle

Empty Full

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number) / [content’ = content + n]
cap (b : Bottle)
pack (b : Bottle)

Creation:
(c : Number) / [content’ = 0 ∧ capacity’ = c]

squirt(n) [content + n < capacity]

pack

Sealed
cap

Figure 4.30 Finalisation

When an object is finalised it ceases to be known in the situation; any associations it

had with other objects are destroyed9. Once finalised, an object can no longer

participate in the situation. The real-world concept represented by the object might

subsequently re-enter the situation but it will appear as a different object, with a

different identity.

4.6 Summary

• The static descriptions of models given by type views present only part of the

story; they must be complemented by models of dynamic behaviour.

• Events denote happenings in the situation being modelled. They cause objects to

be created and the state of objects to change. They have no duration and their

effects can be described only in terms of consequential changes to the model.

• All events have parameters which define the information carried.

• An event type provides a formal description of the event and its parameter types.

9This is another example of associations being managed from just one end.

 4.6 Summary 109

• Every model has an initial object configuration, which exists when an instance of

the model is created.

• Every model has an initial type, of which there is only ever one instance. The

model is created by instantiating the initial type.

• A systematic consideration of object and association creation, deletion and

change will help identify events.

• An event is valid if its parameters do not violate model constraints and the

objects referred to by the event are in the correct state.

• By definition, invalid events do not occur.

• The necessary state of the model for an event to occur can be specified in textual

pre-conditions.

• The consequences of an event can also be specified using text.

• An event table can be used to bring together definitions of events.

• Specific example sequences of event instances, called event scenarios, can be

constructed and their effects illustrated using object diagrams.

• All generic model behaviour is described on an object-by-object basis. We do

not define generic model-wide event sequence views. Extra object types can be

introduced to describe important event sequences.

• Although most objects can take an infinite number of different states (because

they have properties with infinite domains), we distinguish and name those states

which distinguish the possible orderings of events, or which relate to

dynamically acquired properties and associations.

• The formalism used to describe event sequences is the finite state machine. The

important elements of a state machine are states and transitions between states.

• The state changing behaviour of each object type is described in a statechart.

The important elements of a statechart are a state machine and a textual part

containing, among other things, a list of events (the event list) of interest to

objects of the type.

• Transitions are triggered by the occurrence of events.

• States may be nested inside one another.

• Logical pre-conditions can be attached to events in the event list.

• Transitions may be guarded by logical predicates. A transition can be taken only

if its guard is true.

• The whole statechart may be treated as an enclosing state.

• As a shorthand, events which may occur but do not cause a change in state of the

state machine may be allowed by specifying them in the textual part of a state.

• Logical post-conditions may be attached to transitions to specify the

consequences of an event precisely. An object should specify only those

conditions which apply to its own properties and associations.

• Post-conditions may be associated with creation operations to define initial

conditions.

• Post-conditions can describe the creation of objects and associations. The

creation of an association needs to be defined at just one end.

110 Describing behaviour: the basics

• When an object enters a finalisation state, it loses all associations with other

objects and ceases to exist in the model.

4.7 Bibliographic notes

That part of this chapter concerning statecharts derives from the original work by

David Harel [Harel87]. His work is significant for setting out in detail two important

techniques that simplify the specification of finite state machines. Harel’s work has

been popularised by the use of statecharts in the OMT method [Rumba91].

As we noted in chapter 2, our ideas for mathematical specifications, and the

notations used to describe them, derive from the formal specification language Z. An

excellent introduction to Z can be found in [Words92].

Derek Coleman and his colleagues used statecharts coupled with logical

specifications to describe object behaviour in [Colem92].

4.8 References

[Colem92] D. Coleman, F. Hayes and S. Bear. Introducing Objectcharts or how to use Statecharts in

object-oriented design. IEEE Transactions on Software Engineering 18(1) January 1992.

[Harel87] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer

Programming 8:231–274, 1987.

[Marti92] J. Martin and J. Odell. Object-Oriented Analysis and Design, Prentice-Hall, Englewood

Cliffs, New Jersey, 1992.

[Rumba91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented

Modeling and Design, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[Words92] J. Wordsworth. Software Development with Z, Addison-Wesley, Wokingham, Berkshire,

1992.

 111

CHAPTER 5

Describing behaviour:
adding more detail

5.1 The importance of behaviour

The preceding chapter discussed techniques that allow a lot to be said about object

behaviour. However, there is still more that can be said. In this chapter we examine

some specific technical areas where precise interpretation is extremely beneficial and

revealing.

5.2 Statecharts and objects

In the same way that an object type in a type view is a generic description of all objects

conforming to the type, so a statechart for an object type is a generic view of the

behaviour of all objects conforming to the type. Just as each object will have its own

values for its properties, it will also be in one particular state. We use the phrase

statechart instance to mean the realisation of the generic statechart for a particular

object. A particular statechart instance is in a particular state, reflecting the state of the

object which owns it.

The event list in a statechart indicates the types of event that this type of object is

interested in. But not all objects of the type will be interested in all instances of the

listed events. We need to take this into account when deciding on the exact meaning

of statecharts. In the following two sections we discuss how statecharts relate to

individual objects.

5.2.1 The use of ‘self’

Intuitively, when we think about a statechart we interpret it by considering one

particular statechart instance, for one particular object. Of course, there actually exists

simultaneously one instance of a statechart for each object conforming to the type

112 Describing behaviour: adding more detail

described by the statechart. We don’t normally try to consider all the instances of the

statechart at once – mainly because it is nearly always unnecessary.

For any statechart instance, the object known as self is the object which owns that

statechart instance. Guard and pre-condition expressions are always interpreted with

respect to the object self.

Consider an event that transfers the contents of one bottle to another, whose

signature is:

 transferContents(source: Bottle, destination: Bottle)

An instance of this event type involves two bottles and has the following restrictions:

• The source and destination bottles must be different.

• The source bottle must be full.

• The destination bottle must be empty.

The consequences of the event are:

• The source bottle becomes empty.

• The destination bottle becomes full.

Our first attempt at a statechart for Bottle that includes this event might be similar to

that shown in figure 5.1. We have included a pre-condition to show that the source and

destination bottles cannot be the same.

Bottle

Empty Full

transferContents(destination)
[destination = self]

Events:
transferContents (source : Bottle, destination : Bottle) [source ≠ destination]

transferContents(source)
[source = self]

Figure 5.1 Statechart with transferContents (1st attempt)

To understand this statechart we must consider the statechart instance belonging to

each object of the type. If the source bottle is in the Empty state it cannot take the

transition because of the guard; the guard is satisfying the requirement that the source

 5.2 Statecharts and objects 113

bottle not be empty. If the source bottle is in the Full state the guard is satisfied and the

bottle becomes Empty. If the destination bottle is in the Full state it cannot take the

transition because of the guard; the guard is satisfying the requirement that the

destination bottle not be full. If the destination bottle is in the Empty state the guard is

satisfied and the bottle becomes Full. The statechart seems to work.

But what about all the other bottles that might exist, those which are neither the

source nor the destination? For all such bottles, irrespective of their state, the guards

will fail and thus the event cannot happen. According to figure 5.1, a transferContents

event can happen only if there are exactly two bottles and these bottles are the event

parameters. Up until now, we have failed to take into account the effect of an event on

all objects conforming to the type.

To take account of those bottles which are neither source not destination we must

add extra transitions, as in figure 5.2.

Bottle

Empty Full

transferContents(destination)
[destination = self]

Events:
transferContents (source : Bottle, destination : Bottle) [source ≠ destination]

transferContents(source)
[source = self]

transferContents(source, destination)
[(source ≠ self) ∧ (destination ≠ self)]

transferContents(source, destination)
[(source ≠ self) ∧ (destination ≠ self)]

Figure 5.2 Statechart with transferContents (2nd attempt)

Now bottles that are not involved in the event simply take the new self-transitions.

5.2.2 Filters

Designing the statechart body to deal correctly with events for all statechart instances

can become very tedious; it frequently requires the addition of many guarded self-

transitions. In practice, most events affect only one object of the type described by the

statechart, although we have just seen an example that affects two. To simplify the

body of the statechart we can include filter expressions, or filters, in the event list that

select which objects of the type are interested in an event. The event will be presented

only to those statechart instances belonging to objects for which the filter evaluates to

true.

114 Describing behaviour: adding more detail

Bottle

Empty Full

transferContents(destination)
[destination = self]

Events:
transferContents (source : Bottle, destination : Bottle

[(source = self) ∨ (destination = self)])
[source ≠ destination]

transferContents(source)
[source = self]

Figure 5.3 Filters

The statechart shown in figure 5.3 replaces the self-transitions of figure 5.2 with a

filter. This has the effect of filtering the event stream, allowing only those events

which satisfy the predicate to be applied to the statechart instance. In this example, a

transferContents event will be presented only to those statechart instances which

belong to the source or destination bottle. The filter appears just inside the closing

parameter bracket to separate it from the pre-condition, to indicate that it is concerned

mainly with selections based on parameter values, and to show that filters take

precedence over pre-conditions.

We need to reconsider figure 5.4, which first appeared in the preceding chapter, in

the light of our new understanding of statecharts.

Bottle

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number) / [content’ = content + n]

Creation:
(c : Number) / [content’ = ∧ capacity’ = c]
() / [content’ = 0 ∧ capacity’ = 200]

squirt(n) [content + n < capacity]

Empty Full

Figure 5.4 Filling a bottle

Let us assume that there are three bottles, which we will call b1, b2 and b3, on the

conveyor belt of our bottling plant, as shown in figure 5.5. Bottle b2 is under the

 5.2 Statecharts and objects 115

filling nozzle so the next squirt event will squirt into that bottle, and not any other. As

you can see from the statechart in figure 5.4, the squirt event has a parameter denoting

the bottle being filled.

b1 b2 b3

“squirt(b2, 100)”

Figure 5.5 A bottle being squirted

We want our statechart to mean that a squirt event associated with b2 affects only

the statechart instance of b2 and has no effect on b1 or b3. The statechart in figure 5.4

doesn’t mean that. It appears to say that all squirt events, irrespective of their

parameters, are applied to all instances of the statechart, that is, all bottles. So the

squirt event for b2 will be applied to all the bottles, including b3 – which is already in

the Full state. Since the Full state has no transition for squirt we must assume that the

event cannot occur. Thus, with the current statechart, it seems that no squirt events at

all can occur once a single bottle has reached the Full state. We need a way of limiting

the effect of the squirt event to the statechart instance representing the particular bottle

being filled.

The solution is, of course, to include a filter. Filters allow each object to decide

whether it is interested in any specific instance of the event, as depicted in figure 5.6.

A filter has been added to the statechart shown in figure 5.7, so that squirt events

are applied only to the statechart instance belonging to the object specified as the squirt

parameter.

More complex expressions than those shown so far can appear in filters, but to aid

comprehension we place a limit on their complexity. They may refer to self, the event

parameters, literal constants, plus any constant properties or associations (i.e.

aggregations). They cannot refer to variable properties, such as content in the example

above. Filters cannot be attached to creation operations.

116 Describing behaviour: adding more detail

Bottle

Empty Full

Bottle

Empty Full

Bottle

Empty Full

b1 b2 b3

“squirt(b2, 100)”

“Am I
interested in
this event?
No, ignore it.”

“Am I
interested in
this event?
No, ignore it.”

“Am I interested
in this event?
Yes, apply it to
my statechart.”

Figure 5.6 Statechart instances

Bottle

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number [b = self]) / [content’ = content + n]

Creation:
(c : Number) / [content’ = ∧ capacity’ = c]
() / [content’ = 0 ∧ capacity’ = 200]

squirt(n) [content + n < capacity]

Empty Full

Figure 5.7 Filter on squirt

The default filter

Filters in event lists of the form:

 [x = self]

where x is an object conforming to the type owning the statechart (or one of its super-

types), are very common, because in most cases you want events parameterised by an

object of the type being described in the statechart to apply only to the object that is the

 5.2 Statecharts and objects 117

parameter. Indeed, these kinds of filter are so common that we make them the default.

The rule is:

If an event appearing in the event list has exactly one parameter, p, of the type

described by the statechart or a super-type there is a default filter of [p = self].

In all other cases an explicit filter must be shown.

Therefore, the filter shown in figure 5.7 could be removed; it is the same as the default.

So, it turns out that the statechart shown in figure 5.4 was correct after all!

We have already seen one example, the transferContents event, where the default

filter does not apply. Another example appears in figure 5.8, and is concerned with

radio buttons.

RadioButton

Off On
turnOn(r) [r=self]

Events:
turnOn (r : RadioButton [true])

turnOn(r) [r≠self]

turnOn(r) [r=self]

turnOn(r) [r≠self]

Figure 5.8 Radio buttons

Here, all buttons are interested in turnOn events, even if they are not the subject of

the parameter, because they may need to turn off as a result. To avoid the default filter,

which would prevent this, we have supplied a null filter. The two self-transitions are

essential to ensure that a transition can be taken in all circumstances.

Filters and pre-conditions

A filter does not indicate in any way whether an event can or cannot occur. It merely

indicates which object or objects conforming to the type being considered are

interested in any particular event. As we have already seen, pre-conditions can be

specified in the event list to indicate whether an event can occur.

In fact, pre-conditions are also specified on an object-by-object basis – this must be

so because they can refer to properties of the object. It is not reasonable to require a

pre-condition to hold when evaluated against a particular object if the object is not

interested in the event. Therefore, pre-conditions need not hold if the event fails to

pass through the filter.

118 Describing behaviour: adding more detail

Filters and post-conditions

Post-conditions are also, of course, specified on an object-by-object basis. References

to properties and associations are implicit references to self. If an event affects the

state of more than one object of the type being described by the statechart, the filter

should be set to allow the event to be applied to the statechart instance of each.

Placing post-conditions in the event list in no way affects the filtering of the events,

and the post-conditions hold only if the event is accepted by the statechart instance.

5.3 Location of post-conditions

Often there is a choice about where to put post-conditions. If an event is detected by

more than one statechart instance, post-conditions specifying its effect may be put in

several places. The choice is up to the modeller. We suggest that events should be

detected by all the types whose properties and associations it affects, and that the post-

conditions specify all of the effects, even if they can be deduced from post-conditions

specified elsewhere. Sometimes this is too cumbersome. For example, in the Bottle

and Manufacturer example described by the type view in figure 5.9, the event

pack(Bottle) takes a Bottle object into a finalisation state, as shown in the statechart.

Manufacturer
product maker

Bottle

capacity : Number
content : Number

Creation:
(Number)

Bottle

Empty Full

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number) / [content’ = content + n]
cap (b : Bottle)
pack (b : Bottle)

Creation:
(c : Number) / [content’ = 0 ∧ capacity’ = c]

squirt(n) [content + n < capacity]

pack

Sealed
cap

Figure 5.9 Location of post-conditions

 5.5 State invariants 119

The event could also be included in the Manufacturer statechart as follows:

pack(b: Bottle [b ∈∈∈∈ product]) / [product’ = product – {b}]

Often, we omit such post-conditions because they add little to our understanding. A

good design support tool should be able to deduce consequences such as the one above

and make them available to the developer automatically.

Post-conditions could potentially be given globally, that is, at system level rather

than at object type level. For example, we might write, in a global context:

 pack(b: Bottle) / [b.maker.product’ = b.maker.product – {b}]

Indeed, if all post-conditions were given globally in this way, the problem of post-

condition redundancy would be eliminated. However, we reject this proposal because

the dependency of behaviour on the states of individual objects would be more difficult

to express and would not be localised with the object types. This would mitigate

against re-using object types, because it conflicts with one of the basic tenets of object-

orientation, which is to locate behaviour descriptions in object types, rather than

separately. This is our major motivation for introducing the concept of initial objects:

without root objects we may not always have a suitable object type in which to express

all behaviour.

5.4 Variables

Any state may define local variables whose scope is that state and any nested states;

they most commonly appear at the outermost level. Statechart variables are used to

retain information between events, in much the same way as properties. Their values

are established and changed by post-conditions. Unlike properties, statechart variables

can never be referenced outside the statechart; for example, they cannot be used in a

type view.

Statechart variables are defined in the textual part under the heading Variables:. The

variable name and type must appear. It is not permitted to redefine variables defined in

an outer scope.

5.5 State invariants

If desired, invariants can be specified inside states in a statechart to show the

conditions that always prevail when the object is in that state. These invariants are

called state invariants. Some state invariants have been added to the states in figure

5.9.

State invariants are logical expressions which are always true when the object is in

the particular state. They must be consistent with the guards and post-conditions.

120 Describing behaviour: adding more detail

Bottle

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number) / [content’ = content + n]

Creation:
(c : Number) / [content’ = 0 ∧ capacity’ = c]
() / [content’ = 0 ∧ capacity’ = 200]

squirt(n) [content + n < capacity]

Empty

Invariants:
content < capacity

Full

Invariants:
content >= capacity

Figure 5.9 State invariants

5.6 Creation operations and sub-types

In the preceding chapter we introduced the idea of creation operations. We now wish

to explain how creation operations are affected by the creation of sub-types. The

bigger question of how sub-type statecharts are related in general is discussed in

chapter 8.

The creation operations of a super-type do not apply to its sub-types. Every type

must define its own creation operations. When an object conforming to a sub-type is

created, all the appropriate creation operations of the super-types are applied first,

starting with the most abstract type. Objects conforming to a sub-type cannot be

created unless every super-type has a creation operation. The sub-type must explicitly

nominate the appropriate super-type creation operation. Consider figure 5.10.

Company

Corporation

name : String

Creation:
(String)

regNo : Number

Creation:
(Number, String)

Figure 5.10 Creation operations in sub-types

 5.6 Creation operations and sub-types 121

We might expect an entry in the Corporation statechart of the form:

Creation:

 (n : Number, s : String) / [regNo’ = n]

However, this is incorrect because it doesn’t deal with the initialisation of the super-

type property. We must propagate the string parameter to the super-type creation

operation using a special syntax:

Creation:

 (n : Number, s : String) : (s) / [regNo’ = n]

The second set of parentheses, following the colon, enclose a set of parameters to be

used to invoke a super-type creation operation with that signature. It is an error if there

is no such operation. The super-type operation is invoked before the sub-type

operation. We would expect to find a definition of the Company creation operation

that looked like this:

Creation:

 (s : String) / [name’ = s]

Creation parameter propagation is not usually shown on type views, only on

statecharts.

5.6.1 Propagation to multiple super-types

The situation becomes more complicated when there are multiple super-types. We can

deal with this situation by naming the super-types explicitly. Consider the type view

shown in figure 5.11.

CompanyMerchant

Manufacturer

startUpDate : Date

Creation:
(Date)

prodLevel : Number

Creation:
(Number, Date, String)

name : String

Creation:
(String)

Figure 5.11 Propagation to multiple super-types

122 Describing behaviour: adding more detail

The creation section of the Manufacturer statechart would look something like the

following1:

Creation:

 (n : Number, d : Date, s : String) : Merchant(d), Company(s)

The order in which the super-types are listed is not important and carries no meaning.

Special care is needed when multiple super-types share a common ancestor, as in

figure 5.12.

ManufacturerRetailShop

FactoryShop

Merchant

displayArea : Number
Creation:

(Number, Number, Date)

stockValue : Number
startUpDate : Date
Creation:

(Number, Date)

prodLevel : Number
Creation:

(Number, Number, Date)

Creation:
(Number, Number, Number, Date)

Figure 5.12 Creation with common ancestor

The creation section of the FactoryShop statechart would look something like the

following:

Creation:

 (da : Number, pl : Number, sv : Number, sd : Date) :

 RetailShop(da, sv, sd), Manufacturer(pl, sv, sd)

The creation operations of both RetailShop and Manufacturer would look as follows:

1A sharp-eyed C++ programmer might notice that this is very similar to the way the C++ language deals with
constructor initialisation lists.

 5.7 Orthogonal state machines 123

Creation:

 (da : Number, pl : Number, sv : Number, sd : Date) : Merchant(sv, sd)

RetailShop and Manufacturer would both propagate sv and sd to Merchant. Will the

creation operation of Merchant be invoked twice? Recall that we define this model to

mean that a FactoryShop has only one stockValue property; that is, it inherits

‘Merchant-ness’ only once. Clearly, then, the creation of a FactoryShop object should

invoke only one creation operation of Merchant. To deal with this, we define a rule:

When an object of a sub-type is created, exactly one creation operation is

invoked for each super-type, even if there are two or more routes to it. If more

than one creation operation were to be invoked, or if the same creation operation

could be invoked with differing parameters (by virtue of alternative routes), the

model is in error.

The example given above complies with this rule, because the two routes to the

Merchant’s creation operation both give the same parameters.

5.7 Orthogonal state machines

In the hypothetical bottling plant that we have used as a source of examples, bottles

move along a continuously moving conveyor belt. When a bottle needs to be held

stationary, for filling or capping, it is grabbed by vacuum operated clamps mounted

adjacent to the filling and capping machines. Similar clamps, situated along the

conveyor belt, are used to regulate the flow of bottles. We could capture this situation

in a statechart, as in figure 5.13.

There are really two distinct state machines in operation here, one to do with filling,

capping and packing, the other to do with clamping and unclamping. We can use

another notational improvement provided by Harel statecharts, the idea of orthogonal

machines, to capture this distinction. The revised statechart is shown in figure 5.14.

The dashed line separates the two machines. An instance of this statechart must, at

all times, be in one state from the left-hand machine and one state from the right-hand

machine. Notice how the states in the preceding statechart are made up from all the

combinations of states in these two machines; using orthogonal machines greatly

reduces the number of states required in complex models. The most common use of

orthogonal machines is at the outermost level, as here, but any state can contain two or

more orthogonal machines2.

2We do not allow the statechart to be treated as a state, and thus a source for transition arrows, when it contains two
or more orthogonal machines because it would no longer be meaningful to start the arrow from any point on the
edge of the statechart. We could require the arrow to start at some point on the edge within the area of the
appropriate machine but we dislike notations that use the exact positioning of graphical elements to convey
meaning.

124 Describing behaviour: adding more detail

Bottle

Empty &
Stopped

Full &
Stopped

squirt(n) [content + n >= capacity]

Events:
squirt (b : Bottle, n : Number) / [content’ = content + n]
cap (b : Bottle)
pack (b : Bottle)
clamp (b: Bottle)
unclamp (b : Bottle)

Creation:

(c : Number) / [content’ = 0 ∧ capacity’ = c]

squirt(n) [content + n < capacity]

pack

clamp

unclamp

Sealed &
Stopped

cap

Empty &
Moving

Full &
Moving

Sealed &
Moving

clamp

unclamp

clamp

unclamp pack

Figure 5.13 A more complex Bottle statechart

squirt

Bottle

Empty

Full

squirt(n) [content + n >= capacity]

squirt(n) [content + n < capacity]

pack

Stopped

Moving

clamp

unclamp

Sealed

cap

cap

Events:
squirt (b : Bottle, n : Number) / [content’ = content + n]
cap (b : Bottle)
pack (b : Bottle)
clamp (b: Bottle)
unclamp (b : Bottle)

Creation:

(c : Number) / [content’ = 0 ∧ capacity’ = c]

Figure 5.14 Orthogonal machines

 5.7 Orthogonal state machines 125

We have put transitions for the squirt and cap events on the Stopped state to try to

show that these events occur only when the bottle is stationary. The same events

appear on both machines. We must determine how this affects our event sequence

validity rule. The rule now becomes:

Every event in a valid event sequence which appears on the event list of a

statechart and which satisfies the filter for an instance of the statechart must also

satisfy the pre-conditions (if any) and must cause zero or one transition in each

orthogonal machine, provided it causes at least one transition overall.3

We can now see that, according to this rule, adding the self-transitions on the

Stopped state has not had the desired effect. A cap event occurring in the Full and

Moving states will cause a transition in the left-hand machine but not in the right-hand

machine. The rule says this is fine, so we must conclude that cap events can occur

while the bottle is moving.

There are two possible ways of changing the statechart to make it mean what we

want. The first is to guard the squirt and cap events with a condition that the object

must be in the Stopped state. This is fine in most circumstances but tends to clutter the

diagram. The other possibility is to take advantage of the fact that the event sequence

validity rule is really defined in terms of the event list (see below). If we wish, we can

give each orthogonal machine at the outermost level its own event list; then the rules

for event validity apply separately to each machine.

Figure 5.15 use both approaches; the cap event is guarded, the squirt event appears

on both event lists. Since the squirt event is on both lists, it must cause a transition in

both machines. Therefore squirt cannot occur in state Moving.

Finalisation is always an all-or-nothing event. An object that is finalised ceases to

exist in the situation, so it doesn’t matter that finalisation is shown in only one

orthogonal machine.

5.7.1 Event sequence validity rule

The full event sequence validity rule can be stated as follows:

A statechart unit is a group of state machines governed by a separate event list.

An event sequence is valid for a statechart if and only if every event instance in

the sequence, considered in turn, is valid for the statechart.

3For simplicity we ignore allowed events.

126 Describing behaviour: adding more detail

Events:
squirt (b : Bottle, n : Number) /

[content’ = content + n]
cap (b : Bottle)
pack (b : Bottle)

Events:
squirt (b : Bottle, n : Number)
clamp (b: Bottle)
unclamp (b : Bottle)

Creation:
(c : Number) /

[content’ = 0 ∧ capacity’ = c]

Bottle

Empty

Full

squirt(n) [content + n >= capacity]

squirt(n) [content + n < capacity]

pack

Stopped

Moving

clamp

unclamp

Sealed

cap [in Stopped]

squirt

Figure 5.15 Separate event lists

An event instance is valid for a statechart if and only if it is valid for every unit in

the statechart.

An event instance is valid for a statechart unit if and only if it is valid for the unit

in every instance of the statechart.

An event instance is valid for a statechart unit in an instance of the statechart if

and only if:

(a) the event’s type is not listed in the unit’s event list; OR

(b) the event’s type is listed in the unit’s event list but does not pass through the

filter; OR

(c) the event’s type is listed in the unit’s event list and passes through the filter

and satisfies the pre-conditions (if any) and causes at least one transition in

the unit; OR

(d) the event’s type is listed in the unit’s event list and passes through the filter

and satisfies the pre-conditions (if any) and is allowed in at least one

machine in the unit.

So, in the simple case of a statechart with a single unit, an event sequence is valid if

every event in which the statechart is interested triggers exactly one transition4. When

there are two top-level concurrent machines governed by the same event list (i.e. one

4Bear in mind that a statechart is incorrectly constructed if it could allow an event to cause more than one transition
in any one state machine. So, although the rule says at least one transition in the unit, this does not imply two or
more transitions in any one machine. Remember that a unit can consist of more than one machine.

 5.8 Summary 127

unit), as in figure 5.14, each interesting event must trigger a transition in one or both

concurrent machines. When there are two top-level concurrent machines governed by

different event lists (i.e. two units), as in figure 5.15, an event that is interesting to both

units must trigger a transition in each.

5.7.2 Showing orthogonal state on type views

The states in orthogonal machines may be depicted in type views by using separate

type extension triangles for each machine. The type view corresponding to the

statechart in figure 5.15 is shown in figure 5.16.

Bottle

capacity : Number
content : Number

Creation:
(Number)

Empty Full Sealed

Stopped

Moving

Figure 5.16 Orthogonal states in the type view

5.8 Summary

• Each object conforming to a type has its own instance of the type’s statechart.

The object that owns a particular instance of a statechart is called self.

• Filters may be added to the event list to select which statechart instances are

interested in a specific event instance.

• In principle, all objects affected by an event should detect the event and the

effects shown on the relevant statechart using post-conditions. However, post-

conditions are sometimes omitted where they can be inferred from others.

• Statecharts may define their own local variables.

• A state may contain state invariants that describe conditions that hold when an

object is in the state.

• Creation operations are not inherited by sub-types from super-types. Every type

must specify its own creation operations.

128 Describing behaviour: adding more detail

• Creation operation parameters must be propagated from sub-types to super-types

to ensure correct initialisation.

• A statechart may include two or more orthogonal state machines. An object

must be in one state of each machine.

Part Three

Models of software

 133

CHAPTER 6

Software specification

6.1 The software boundary

Chapters 2–5 discussed techniques for describing situations in the world, by building

essential models. In this chapter we discuss the extension of these techniques for

specifying software – the specification model. At some point during a development

(which may or may not be at the beginning), the interface at the boundary between the

software and its environment must be specified, and the specification model provides a

way to specify this interface precisely. Like the essential model it uses notations which

describe object types and how their instances change state when events are detected.

It is a good idea to build an essential model in cases where the software boundary is

not well-understood, in order to provide a systematic way of making decisions about

that boundary. In other cases, the software boundary is sufficiently well-understood

that there is no need to build an essential model, and the specification model provides

the starting point for development. In yet other cases, especially for interaction

domains, the level of abstraction offered by the specification model may be

unnecessary, and development may proceed directly by considering the implementation

model. The relationship between essential, specification and implementation models is

discussed in detail in chapter 10, and the need to build the models in different

circumstances is discussed in chapter 13.

The interface between the software and its environment is, in principle, a complete

external specification of the behaviour of the software; but we are obviously concerned

with the software’s internal structure, too. There are an infinite number of possible

software systems which would all yield the same externally visible behaviour, but

some of them have a much more robust and flexible internal structure than others. The

best way to design such a structure is to use a combination of expressive modelling

techniques which permit a proper separation of concerns, their combination providing

redundancy between techniques to enable cross-checking. We adopt the basic principle

that the specification model is constructed from object types and statecharts, just as the

other models are. Using this principle, we can strive for a seamless development in

134 Software specification

which the discontinuities between the different models are minimised as far as

possible.

The techniques we use for the specification model build on those we have described

already. We extend the notation for statecharts and also change the interpretation of

this notation slightly. In chapters 2–5 we introduced the techniques in the context of

essential modelling; in this chapter we start to take into account some of the problems

of software development.

 In the specification model, we describe the effects of incoming events in terms of

the changes of state they cause, and any outgoing events generated as a result. So the

specification model is a stimulus–response model of a software system, as illustrated in

figure 6.1.

Detected event
State change

Generated event

Software system

Figure 6.1 A stimulus–response model

The specification model is idealised because it assumes infinitely fast processing,

and an infinite amount of totally reliable persistent storage with instantaneous random

access. By making these assumptions the specification model leaves on one side issues

such as distribution, concurrency, persistence, and error-recovery: these are addressed

in the implementation model.

6.2 Agents

It is often helpful to think about the interface between the software and its environment

in terms of agents. Agents are people, or other systems, which interact with the

software. Agents are outside the software itself, but are an essential part of the whole

situation. If an essential model is built, agents and their behaviour might be modelled

in it. Some examples of agents are as follows:

• in a stock control system, the storeman who manages the arrival and departure of

goods and enters information into the computer system;

• in a petrol station, the customers and attendants;

• in a branch system for a bank or building society, the customers and tellers;

• in a lift control system, the passengers, motors, sensors and actuators;

• in a remote controller for a video recorder, the operator and the remote recorder

itself.

 6.2 Agents 135

When agents are human, they correspond to roles played by people during interactions

with the software. One person may play many roles and thereby act as many agents;

conversely, many people may play one role and act as a single agent.

Figure 6.2 depicts a software system and agents – three people and one clock. It

indicates stimuli going from the agents to the software system, and responses going

from the software back to the agents. Note that the state of the software may always be

assumed to be visible to observers, even when no events are explicitly generated.

Software system

Figure 6.2 Software system and agents

In any situation, agents can be found at several different levels of abstraction. For

example, when modelling the logic of stock control we will think of the storeman as an

agent, whereas when modelling the user-interface to the stock-control software we may

well think of the keyboard and touch screen as agents. Agents are chosen at the correct

level of abstraction for the model being built.

The interface between software and its environment is a designed system. Often

this interface involves interacting with a computer screen using input devices such as

keyboard, mouse, touch screen or pen. Equally, the interface may involve sensors and

actuators, such as bar-code readers, temperature or position sensors, clocks, valves,

motors, embedded controllers, etc. Choosing the correct interface technology (from a

rapidly evolving selection) and designing an effective interface are crucially important

– although both are outside the scope of this book.

A concept domain is a portion of the software system responsible for maintaining a

model of the state of its environment. Every software system has one or more concept

domains, and a specification model for the concept domains is a very important part of

any system development. This model is an idealised description of stimulus–response

behaviour at the level of abstraction of the concept domains. It does not consider the

mechanics of how stimuli are detected by the software, or how responses are translated

into real occurrences in the world. These are the responsibility of other domains –

which may, nevertheless, also be described using specification modelling techniques.

136 Software specification

Agents may be represented by software objects in the specification model, often

within interaction domains. The software agent understands how to communicate with

the real agent, so that when, for example, the real agent causes an event that is to

stimulate the concept domain, the software agent can detect the event and transform it

appropriately. Some agents may themselves be modelled in a concept domain.

Except in the simplest systems, it is not possible to describe the stimulus–response

behaviour of a system completely without describing its internal state, because the

response to a particular stimulus depends in general upon the state at the time of the

stimulus. Nevertheless it is often useful when building a specification model to

describe the typical stimulus–response behaviour of a system, that is, its responses to a

particular sequence of stimuli in normal operation, as well as under various special

conditions. We give several examples of such event scenarios in this chapter.

6.3 Type views

Specification model type views use exactly the same notation as type views in the

essential model, but are interpreted as describing types of object in the software, rather

than types of object in the situation. All of the constructs of chapters 2 and 3 are used

in the specification model without modification: types, properties, associations and

invariants.

Figure 6.3 shows the specification model type view of an example system that

monitors the prices of company shares. We use this example in this chapter and later

in the book. Here we use it to illustrate some of the features of specification models.

Shares are associated with a particular sector, such as chemical or retail, and many

sectors of shares are traded on a particular stock exchange, such as London or New

York. A history of changes to share prices is kept using a sequence of ShareChange

objects, each one representing a price change. Shares, sectors and exchanges have a

movement property, the amount by which their price (or sum of prices for sectors and

exchanges) has increased or decreased since the start of trading. Minder objects can be

attached to shares, sectors and exchanges; minders generate an alarm if the movement

exceeds a pre-determined limit.

To make it perfectly clear that the diagram in figure 6.3 describes the types of

software object, we append -S to the type-names. In this book we adopt this

convention for all specification models. We don’t consider the -S to be an integral part

of the type name, so it doesn’t get used in declarations, event lists, etc.

The similarity between the techniques for type views in essential and specification

models should not be misunderstood. It does not mean that the essential model and

specification model type views for a given system are the same. An essential model is

created for the purpose of understanding a situation, not for specifying software to

operate in that situation. There may be an essential model describing associations

between ‘real’ shares, sectors and exchanges, and there may well be a close

correspondence between it and the specification model; but they are not the same thing.

 6.4 Events 137

Invariants:
movement =

sum share.movement

Share-S

price : Number

Invariants:
optional price

Sector-S Exchange-S

ShareChange-S

price : Number
date : Date
time : Time

[seq]

Mindable-S

movement : Number

Minder-S

limit : Number
desc : String

Invariants:
limit >= 0

Invariants:
movement =

sum sector.movement

minded

Figure 6.3 Specification model type view of share system

6.4 Events

Unlike in the essential model, detected events or stimuli in the specification model can

cause events to be generated. These can be subsequently detected by the model

(internal events) and/or manifested in the environment (external events or responses).

The syntax for all specification model events is the same as in the essential model.

Like essential model events they are instantaneous and broadcast, that is, they may be

detected simultaneously by many objects of many types. The effect of a detected event

is to cause state changes in one or more objects. These state changes are specified by

post-conditions on statecharts defined for object types.

Why do we propose that events are broadcast in an object-oriented specification?

Many authors would argue that the very essence of object orientation is message-

sending between objects, and would therefore argue that broadcast events violate this

basic principle. We disagree, and believe that describing software in terms of

message-sending is over-specification for the purpose of specifying stimulus–response

behaviour. Descriptions of message-sending mix up specification issues with

implementation tactics.

Consider, for example, the simple case of representing the employment of a person

by a company, in a software system partially described by the type diagram given in

figure 6.4.

Person-S Company-Ssalary : Number

Figure 6.4 Type view for employment

138 Software specification

To specify the effect of a stimulus to this software system which establishes a new

employment association between a Person object and a Company object, we define an

event:

 hire(p: Person, c: Company, sal: Number)

and specify the consequence of that event for the types Person and Company by using

post-conditions, for the Company:

 hire(p: Person, c: Company, sal: Number) / [p ∈ ∈ ∈ ∈ person’ ∧∧∧∧ salary’(p) = sal]

and for the Person:

 hire(p: Person, c: Company, sal: Number) / [c ∈∈∈∈ company’ ∧∧∧∧ salary’(c) = sal].

Specifying the results of this stimulus using messages would require us to choose

between the following tactics:

1. Send a message to the Company object, which then sends a message to the

Person object.

2. Send a message to the Person object, which then sends a message to the

Company object.

3. Send a message to a third object, which then sends two messages to the Company

and Person objects – in one order or the other.

Any one of these tactics is an acceptable implementation of the desired behaviour, but

with broadcast events the designer may avoid choosing between them at specification

time. Deciding about the order of these messages requires detailed consideration of

implementation issues such as concurrency. Concurrency is necessary in an

implementation when an external stimulus must be responded to while the

consequences of a previous stimulus are still being processed. In the specification

model we avoid thinking about this by assuming that all event processing is

instantaneous, and that all of the consequences of an external stimulus (including the

processing of any internal events generated as a result) are completed before any

further external stimuli occur. The broadcast event model thus allows us to specify

only the necessary logical consequences of a stimulus, without specifying any

unnecessary sequencing. As a result it becomes easier to design a concurrent

implementation to satisfy performance requirements than it would be if the design of

message-sequencing had been pre-empted in the specification. In general, avoiding

premature commitments is a most important strategy for successful software design.

Note that only one of the post-conditions given above is strictly necessary, because

the other can be deduced from it. We give both for symmetry and clarity. With post-

conditions there is a trade-off between clarity and minimality of expression. When

using a specification model for the purpose of designing an implementation we often

 6.4 Events 139

need to determine which events affect a type and how. As with essential modelling,

we normally suggest that an event is detected by all the types whose properties and

associations are affected by it, and that post-conditions are given for all the effects it

has on the properties and associations of the type in question, even though many of

these post-conditions could be deduced logically from the type diagram and each

other1.

6.4.1 Pre-conditions

Not all events can happen at any time. As with the essential model, there are pre-

conditions for events to occur. However, the interpretation of these is rather different in

the specification model.

In the essential model, the failure of a pre-condition is interpreted to mean that an

event cannot happen in the situation being described, that is, it is logically impossible.

By contrast, in the specification model the failure of a pre-condition means that the

software’s response to the event is undefined.

The basic principle behind this interpretation is design by contract. A pre-condition

is part of the contract that a supplier makes to its clients: ‘if you (the client) promise

not to generate this event unless the pre-condition is satisfied, I (the supplier) promise

to respond properly. However, if you generate it at some other time, I make no

promises at all about what will happen.’ This interpretation enables us to construct a

robust story about sub-types, as we will see in chapter 8.

The implementor of a specification model needs to consider carefully how the pre-

conditions are to be satisfied. It may be a physical or logical property of the situation

that the event cannot happen unless the pre-condition is satisfied; in this case an

undefined response is adequate, although a healthy implementation would normally

produce some kind of error report should the event actually occur. On the other hand, it

may be the responsibility of some part of the software, typically an interaction domain,

to validate events, and to ignore or reject those that fail the pre-conditions. Whichever

of these strategies is ultimately adopted, the specification model itself simply leaves

the response undefined.

6.4.2 Event scenarios

It is often useful to show a typical sequence of events for the whole or part of a

software system using event scenarios. The scenario tabulated below shows stimuli

and responses during a customer’s typical interaction with a petrol station2 to dispense

petrol. Three agents participate in this scenario: the customer, the attendant controlling

1Smart automated tools could either check the consistency of redundant logic, or deduce any consequences omitted
by the designer.

2Gas station, for US readers.

140 Software specification

the transaction and the physical pump. Stimuli, or events detected by the software, are

indicated by a question mark ‘?’ prepended; responses, or events generated by the

software, are indicated by an exclamation mark ‘!’.

Customer Attendant Pump

?gunRemove(p) ?gunRemove(p)

 !alarmOn(p)

 ?activatePump(p)

!zeroPumpDisplay(p) !zeroPumpDisplay(p)

 !alarmOff(p)

 !zeroConsoleDisplay(t)

!motorOn(p) !motorOn(p)

 ?dispensePulse(p)

!updatePumpDisplay(p) !updatePumpDisplay(p)

 !updateConsoleDisplay(t)

 ?dispensePulse(p)

!updatePumpDisplay(p) !updatePumpDisplay(p)

 !updateConsoleDisplay(t)

. . .

. . .

. . .

?gunReplace(p) ?gunReplace(p)

!motorOff(p) !motorOff(p)

?pay(t) ?pay(t)

?receiptRequest(t) ?receiptRequest(t)

!receiptPrint(t) !receiptPrint(t)

Each column of the table is an event scenario, which describes the software system’s

overall behaviour from the perspective of a single agent. The three scenarios could be

combined if required to produce a single scenario describing the overall composite

behaviour of the software during this interaction.

Each scenario represents the events that an agent participates in, either by initiating

or receiving it, or, in the case of human agents, by observing it as a necessary part of

their interaction with the system. For example, the customer initiates the gunRemove

event, which is a stimulus to the software and hence indicated by a ‘?’. The customer

observes the zeroPumpDisplay response, but the customer does not normally observe

the alarmOn response and hence this does not appear in the customer’s column. The

inclusion of a particular event in a particular agent’s scenario might be a matter for

argument. From the point of view of the specification, this doesn’t matter: agents are

not formal concepts in our notation, and the presence or absence of a particular event

in a particular agent’s scenario has no impact on the software specification. Scenarios

should be thought of as a useful informal tool for reasoning about the software

boundary.

 6.4 Events 141

Each event in the scenario has parameters, which are either values or the names of

objects. These names are interpreted in an associated object diagram, shown in figure

6.5, which shows a Pump called p and a Transaction called t, associated with each

other after the creation of the transaction (which occurs as a response to activatePump).

(Pump)
p

(Transaction)
t

Figure 6.5 Object diagram showing Pump object p and Transaction object t

Often, object configurations change during scenarios; if this happens, more than one

object diagram may be needed to interpret the scenario fully. For example, in the

scenario above, only the pump object exists until the transaction is created.

Generated responses will eventually be manifested in the world, often by audible

and visual signals, or by actuating a motor or other device. Specification modelling

says nothing about the physical mechanisms used to create these manifestations. A

generated event should be interpreted as a request to produce a manifestation, with the

order of these requests defined by the order in which the events are generated.

It is important to note that the order of the actual manifestations themselves depends

upon the nature of the physical mechanisms which create them. In some cases we

know that the order of the manifestations will be the same as the order of the requests;

for example we may safely assume that a request to switch something on followed by a

request to switch it off again will cause it to be switched first on and then off. But in

other cases we must be more careful. To land an aircraft automatically, we might

generate an event which represents a request to put the wheels down, followed by an

event which represents a request to land. It would be foolhardy to issue the second

request immediately after the first, because the request to put the wheels down takes

considerable time to fulfil. In such a case the software had better wait for a detected

acknowledgement that the wheels really are down before issuing the request to land.

Note that the ordering in event scenarios is the order of requests, not of their

manifestations.

The choice of events to include in a scenario depends upon the purpose of the

scenario. Often, a scenario is created from the perspective of a specific agent or a

specific software object. Scenarios can be used to design and validate state views,

which describe the complete behaviour of the software system as it is partitioned

between objects.

142 Software specification

6.4.3 The event table

For those events which are detected by the software it is often useful to draw up a table

with a description for each event, showing its parameters and informally describing its

pre-conditions and consequences, exactly as we discussed for essential model events in

chapter 4, except that the consequences of an event may include the generation of other

events.

6.5 State views

Every type in a specification model has a state view, defining how instances of the type

respond to events. Syntactically, state views in the specification model are the same as

in the essential model, with the addition of generated events as described below.

6.5.1 Generated events

A specification model statechart can specify the generation of events. Events can be

generated from specific transitions, or from event list entries. An additional section in

the event list of the statechart, headed Generations:, gives the types of events generated

in the statechart.

The syntax for generating an event consists of naming the generated event, giving

values for any parameters, after the ‘/’ and any post-conditions on a transition or event

list entry.

To illustrate event generation, consider the statechart in figure 6.6, which shows the

behaviour of the type Minder in the model shown in figure 6.3.

Armed

Events:
priceCheck(m: Mindable [m = minded])
cancel(m : Minder)

Allow:
priceCheck

Active

Minder-S

priceCheck [abs minded.movement > limit] / minderAlarm(self)

priceCheck [abs minded.movement <= limit]

cancelTriggered

Generations:
minderAlarm(Minder)

Creation:
(l: Number, s: String) / [limit’ = l] [desc’ = s]

Figure 6.6 Minder statechart

 6.5 State views 143

The statechart responds to the priceCheck and cancel events, and allows the

priceCheck event in any state. The priceCheck event carries as its parameter the

identity of the relevant Mindable, which might be a Share, Sector or Exchange. The

transition between the Armed and Triggered states shows the generation of an external

event called minderAlarm with one parameter whose value is self, that is, the identity of

the Minder object generating the event. The Generations: section in the textual part

shows the type of all events generated on the statechart, in this case minderAlarm.

Figure 6.7 shows a possible sequence of events for this statechart, together with an

object diagram corresponding to the state of affairs at the place in the scenario marked

with an asterisk.

?priceCheck(s)

?priceCheck(s)

?priceCheck(s)

.

.

?priceCheck(s) *

!minderAlarm(m)

?priceCheck(s)

?priceCheck(s)

.

.

?cancel(m)

(Share)
[movement = 101]

s
(Minder)

[limit = 100]
m

minded

Figure 6.7 Event scenario plus object diagram at point when the alarm occurs

6.5.2 Entry and exit generations

Figure 6.8 shows an extended version of the Minder statechart, with an additional

Disabled state. Events called lightOn and lightOff are generated on all of the entries and

exits from the Triggered state. As a result the statechart is rather cluttered.

The clutter can be reduced considerably by using entry and exit event generations.

Any state can have in its textual part a list of generations under the heading Entry:,

which will be performed upon any entry to that state, and a list of generations under the

heading Exit:, which will be performed upon any exit from that state. Using these

144 Software specification

features the Minder statechart can be simplified as shown in figure 6.9, where the

Triggered state has entry and exit sections containing the event generations.

Armed

Events:
priceCheck(m: Mindable [m = minded])
cancel(m: Minder)
disable(m: Minder)
enable(m: Minder)

Allow:
priceCheck

Active

Minder-S

priceCheck [abs minded.movement > limit] /
minderAlarm(self), lightOn(self)

cancel

disable

enable [abs minded.movement > limit] /
minderAlarm(self), lightOn(self)

Disabled

enable [abs minded.movement <= limit]

disable / lightOff(self)

cancel / lightOff(self)

Generations:
minderAlarm(Minder)
lightOn(Minder)
lightOff(Minder)

Creation:
(l: Number, s: String) / [limit’ = l] [desc’ = s]

priceCheck [abs minded.movement <= limit] /
lightOff(self)

Triggered

Figure 6.8 Extended Minder statechart with clutter

Armed

Events:
priceCheck(m: Mindable [m = minded])
cancel(m: Minder)
disable(m: Minder)
enable(m: Minder)

Allow:
priceCheck

Active

Minder-S

priceCheck [abs minded.movement > limit]

priceCheck [abs minded.movement <= limit]

cancel

disable

Disabled

enable [abs minded.movement <= limit]

Entry:
minderAlarm(self), lightOn(self)

Exit:
lightOff(self) enable [abs minded.movement > limit]

Triggered

Generations:
minderAlarm(Minder)
lightOn(Minder)
lightOff(Minder)

Creation:
(l: Number, s: String) / [limit’ = l] [desc’ = s]

Figure 6.9 Simplified statechart with entry and exit generations

Entry and exit generations are triggered on any entry and exit from the state,

including transitions which explicitly begin and end with the same state. Allowed

 6.5 State views 145

events which do not cause transitions, such as priceCheck occurring in the Triggered

state with [minded.movement>limit], do not trigger entry and exit generations

(although if priceCheck were to have any post-conditions or generations defined in the

event list, these would still apply).

Event generations may also be shown in the event list of the statechart, after any

post-conditions, meaning that the generation occurs whenever the event occurs.

6.5.3 Internal events

Often, the overall response to a stimulus can only be described as taking place in a

number of discrete steps. Each of the individual steps moves the entire system from

one valid state to another, but the overall response to the stimulus consists of all the

steps taken together. We call this division into discrete steps factoring the stimulus,

and we describe it using internal events, which are both generated and detected by the

software (although they might also cause external effects)3. Figure 6.10 illustrates the

statechart for the Share type from figure 6.3, and shows how priceCheck events

detected in figure 6.6 are actually generated by a Share object. Similar statecharts, not

shown, exist for the Sector and Exchange object types.

Share-S

Events:
priceChange(s : Share, p : Number, d : Date, t : Time) /

[price’ = p]
[shareChange’ = shareChange � [new ShareChange(p, d, t)]]

Generations:
priceCheck(Mindable)

Creation:
() : ()

Unpriced Priced

priceChange

priceChange(p) / [movement’ = movement + p - price]
priceCheck(self)

Figure 6.10 Shares generate priceCheck events

To understand figure 6.10 fully we need the statechart for Mindable, which although

trivial, shows how the movement property is initialised.

3Internal events are one of several possible approaches to the factoring of a response. A second approach would be
unstable states, with transitions guarded only by conditions. A third would be transitions guarded by statements
about state changes in other statecharts. We discard these approaches in favour of internal events to avoid a
proliferation of additional concepts (although we use unstable states to decompose transitions in the implementation
model: see chapter 7).

146 Software specification

Mindable-S

Creation:
() / [movement’ = 0]

Figure 6.11 Mindable statechart

In this example, the overall consequence of a priceChange event is in two well-

defined stages:

1. Change the price of the share, sector and exchange.

2. Check that the movement has not exceeded the limit.

The first consequence is specified by the post-condition on the priceChange event,

together with the invariants on the type view, and the second by the generation of the

priceCheck events.

Note that all of the consequences of an external stimulus happen before any further

external stimuli may happen. In other words, all of the internal events are generated

and detected, and their consequences established, before any further external events.

We may assert this because of our fundamental assumption in the specification model

that all processing is instantaneous.

6.5.4 Event ordering

Events are generated from a transition after its post-conditions have been established4

and the target state has been entered. In general, where the source state of a transition

has exit generations and the target state has entry generations, the complete evaluation

of the transition proceeds in the following order:

1. Establish all of the post-conditions and enter the target state.

2. Trigger exit generations on the source state, in order.

3. Trigger generations defined in the event list, in order.

4. Trigger generations on the transition, in order.

5. Trigger entry generations on the target state, in order.

If an event is allowed and has no transition defined for the current state, its complete

evaluation proceeds by establishing the post-conditions and then triggering in order any

generations defined in the event list.

The overall response of a given statechart instance to a single event may therefore

be a sequence of events, generated in order after the post-conditions have been

4As with the essential model, the order of post-conditions is immaterial.

 6.5 State views 147

established. When one of these events itself gives rise to further events, all of these

further events occur before the next event in the sequence.

An object changes state instantaneously at the same time as the post-conditions are

established. This means that when any generations occur, the object is already in its

new state. Note in particular that any exit generations in the source state happen after

the object is in the target state. This interpretation, although somewhat strange at first

sight, gives the cleanest and most intuitive meaning for event generations as a whole.

What about when the same event is detected by several statechart instances, each of

which generates events as a result? We can definitely state that all of the post-

conditions are established, and all of the state changes occur, before any of the

generations. But note that we cannot determine the relative ordering of events

generated by different objects in such circumstances. If these events are themselves

detected within the model they could give rise to ill-formed specifications; we return to

this point later in this chapter.

6.5.5 Events generated and detected by ‘self’

Since a state change is completed before any events are generated, it is legitimate to

generate an event from a statechart instance which is detected by the same instance.

This can happen directly, as illustrated in the example below, or indirectly in cases

where, because of the behaviour of other objects, a generated event results in an event

detected by the original object.

Consider the type shown in figure 6.12, which specifies the operation of a type

Magazine, controlling a magazine of slides in a slide projector. This statechart detects

the event moveTo(n: Integer), and generates a sequence of up or down events which

will move the physical magazine step-by-step to the required position.

Magazine-S

actual : Integer
desired : Integer

Magazine-S

Idle

GoingUpmoveTo(n) [n>actual] /
[actual’ = actual +1]

moveTo(n) [n<actual] /
[actual’ = actual -1]

Creation:
() / [actual’ = 0] [desired’ = 0]

Events:
moveTo(m: Magazine, n : Integer) / [desired’ = n]
up(m:Magazine)
down(m: Magazine)

up [actual < desired] /
[actual’ = actual +1]

up [actual = desired]

down [actual = desired]

down [actual > desired] /
[actual’ = actual -1]

Entry:
up(self)

GoingDown

Entry:
down(self)

Generations:
up(Magazine)
down(Magazine)

Allow:
moveTo

Figure 6.12 Slide magazine with self events

148 Software specification

For example, if actual = 0 and the event moveTo(7) is detected, then seven up events

will be generated. In this example the generated events are detected internally as well

as causing external manifestations (the physical movement of the slide magazine).

6.6 Object responsibilities

A crucial aspect of specification modelling is allocating the responsibility for overall

system behaviour among individual objects. The way to determine where

responsibilities belong is by considering the potential for change in the design. A

properly partitioned system is much more resilient to changing circumstances than one

where responsibilities have been poorly allocated.

Consider, for example, a simplified version of the system shown in figure 6.3, in

which alarm processing were a responsibility of the share objects themselves. In such

a system, there would be no scope for setting alarms on complete sectors or exchanges,

and no scope for setting more than one alarm on any price. Perhaps the original

requirements are such that a single alarm per share is all that is required. If, later on,

the requirements change so that sector alarms are also required, the worst possible

approach would be to retain responsibility for alarm processing in the share objects.

All too often we see software systems modified in this way which rapidly become akin

to unmanageable spaghetti.

Responsibilities can be divided informally into categories. Taking an

anthropomorphic approach, that is, pretending that objects are people, an object can be

thought of as having the following responsibilities:

• knowing (i.e. remembering or calculating) a value;

• listening for an event;

• telling other objects about an event;

• creating new objects.

In specification models these correspond to properties, event list entries, generations

and object creations. Thinking about an object’s responsibilities in anthropomorphic

terms is often very helpful to beginners in object-oriented design, because it helps them

to visualise how the system works.

6.7 Unordered events

Note: this section is rather specialised and may be omitted on a first reading.

Consider the somewhat contrived arrangement in figure 6.13, which shows three

statecharts dealing with three events. Assume that a start event arrives. In

consequence, the Initialiser generates an initialise event, and the Resetter generates a

reset event. These are un-ordered with respect to each other. So what does the Starter

 6.7 Unordered events 149

do? If initialise is before reset, then it will go smoothly from Starting to Initialised to

Reset to Started, whereas if reset is first, the behaviour is undefined.

The problem is that a set of unordered events is being detected by the same object.

As a result, the overall specification is ill-formed.

Initialiser-S

Starting Started
start/initialise(starter)

Events:
start(s:Starter [s = starter])

Starter-SInitialiser-S Resetter-S

Resetter-S

Starting Started
start/reset(starter)

Events:
start(s:Starter [s = starter])

Starter-S

Starting

Initialised

Reset

Started

Events:
start(s:Starter)
initialise(s: Starter)
reset(s: Starter)

start

initialise

reset

Figure 6.13 An ill-formed specification

A slightly more realistic, and more subtle, example is shown in figure 6.14. Here

the refresh event is detected by all the Window objects, every one of which generates

an update event. This is unproblematic as long as each update event is only detected

by a single object, for example its own Window, as shown in the diagram.

Display-S Window-S

index: Integer

Window-S

Waiting Updated
refresh / update(self)

Events:
refresh(d: Display [d = display])
update(w: Window)

Updating
update

Figure 6.14 Generating events with no order defined

150 Software specification

However, if the Display object were to have the update event in its own event list,

the order of detection of these events by the Display would be undefined. For example,

we might encounter something like figure 6.15. If we were to assume that the set of

update events is actually processed sequentially, this statechart would generate a

sequence of reset and initialise events in an arbitrary order. This would become a

problem as soon as a statechart anything like the Starter in figure 6.13 were introduced

into the system.

Display-S

Waiting

update(w) [w.index < 5] / reset

Events:
update(w: Window [w ∈ window])

update(w) [w.index >= 5] / initialise

Figure 6.15 A problematical statechart

A set of generated events with no well-defined order does not present a problem.

What does present a problem is if a single instance is capable of detecting more than

one event in this set with different results, as with Display in this example. In practice,

such situations rarely arise, and they can readily be avoided by using the following

rule:

Whenever a set of generated events does not have a well-defined order, no

instance may detect more than one of this set.

A set of events without a well-defined order is generated when a single event is

detected by several instances, each of which generates one or more events as a result.

Once such a set has been generated, its consequences (i.e. events generated as a result

of detecting any of the unordered events) remain unordered.

6.8 Summary

• The specification model is a stimulus–response specification of a software

system.

• It is useful to think of the agents which interact with the software system.

• A specification model assumes infinite processing and memory resources.

• Specification model type views are very similar to essential model type views,

but describe software objects rather than objects in a general situation.

 6.10 References 151

• Specification model events can be detected, generated or internal.

• Events have broadcast semantics to avoid premature commitment to sequencing.

• Event scenarios are useful to describe typical event–response sequences.

• Detected events can be described using pre-conditions and consequences.

• Processing responsibilities should be properly allocated to objects for a robust

design.

• Statecharts in the specification model define state changes and events generated

when events are detected. Entry and exit sections can make the statechart more

compact.

• The behaviour of the software is undefined for events with no transitions which

are not allowed.

• Internal events are used to factor the overall effect of detected events.

• Events are partially ordered.

• Events may be both detected and generated by the same object.

• Unordered events may give rise to ill-formed specifications. These may be

avoided by not detecting several unordered events in the same object.

6.9 Bibliographic notes

Some of the inspiration for our treatment of events in essential and specification

models comes from Tony Hoare’s work on Communicating Sequential Processes

[Hoare85].

6.10 References

[Hoare85] C.A.R. Hoare. Communicating Sequential Processes, Prentice-Hall, Hemel Hempstead,

Hertfordshire, 1985.

152

CHAPTER 7

Describing the implementation

7.1 The implementation model

In the implementation model we examine the flow of control in the software. We are

not directly concerned with the way in which events are handled and generated but,

instead, we design the message interactions between objects. The implementation

model must deal with the ‘edges’ of the software; the points where the software

interacts with its environment. The software must detect stimuli and cause messages to

be sent; some messages will cause responses to be generated in the environment. A

major concern of the implementation model is the mapping of stimuli to messages and

messages to responses. We deal with this subject in chapter 11.

This chapter describes techniques that help to determine the correct sequence of

message processing. Messages are not processed instantaneously, so we need to take

into account the finite speed of computer hardware when producing an implementation

model. To ensure an adequate response to stimuli, we may need to introduce multiple

threads of control. This subject is covered in depth in chapter 9.

The implementation model is expressed using concepts that are familiar in object-

oriented programming, namely objects and messages, but we are not necessarily

assuming implementation in an object-oriented programming language. The abstract

model of execution defined by the implementation model can be mapped into any

number of different execution environments, although we cheerfully admit that the

easiest mapping is to an object-oriented language; anything else is a compromise.

It is perfectly possible to design an entire software system using only the

implementation model perspective. One might argue that since the detailed design of

object and message interaction is an inevitable part of the development process one

might as well do the whole job at that level. For some simple systems this view may

be appropriate but we believe the separation of concerns provided by the distinctions

between the specification and implementation models is well worth the extra effort in

most cases. For that part of the software concerned with implementing the software’s

model of the world (called the concept domains; see chapter 11) we think it nearly

always worth the effort.

 7.2 Mechanisms 153

The implementation model occupies the middle ground between specification and

executable code. It shows how inter-object message sequences achieve the desired

specification; it does not show the internal details of object implementation. However,

the model does allow a complete description of implementation design, at a level of

abstraction above that provided by programming languages such as C++ or Smalltalk.

We see no reason why implementation models should not be directly executable in the

longer term.

7.2 Mechanisms

In the implementation model, objects communicate using messages. A message is a

point-to-point synchronous communication mechanism. One object, the sender, sends

a message to another object, the receiver, which takes control when it receives the

message, processes it and then allows control to return to the sender. Control is

relinquished by the sender when the message is sent. The sender must know the

identity of the receiver but the receiver does not automatically know the identity of the

sender. The message always has a name, the name of the operation to be invoked; it

may have parameters and may return a result. The fundamental semantics of a

message are the same as those of a procedure call in a conventional programming

language; the different terminology is used to show that messages extend the

capabilities of procedure calling: the same message can invoke different behaviour in

different types of object.

We need to distinguish between messages and operations. An operation is a piece

of code triggered by a message. Many types may have an operation with the same

name and parameter signature defined for them.

We show a message-send using a similar notation to that of model navigation,

introduced in chapter 2. To send the message x to the object known by the name a we

write:

 a.x

If the message has parameters we show them in parentheses:

 a.x(4)

For convenience we can send a set of messages in one statement. If the name s

represents a set of objects, we can send each object in the set the message x by saying:

 s.x

One of the most important views of the implementation model is the mechanism. A

mechanism shows, for a particular arrangement of objects in particular states, the

sequence of messages sent when one object receives a particular message. Each

154 Describing the implementation

mechanism is an example; it shows the single sequence of messages that flow in the

particular scenario. It is therefore difficult to use mechanisms to define the behaviour

of a system completely because a very large number of mechanism diagrams would be

required to represent all possible states of even a moderately complex system. Instead,

we identify and construct key mechanisms, those which illustrate the most important

and significant patterns of message interaction. The way we select key mechanisms is

similar to the way we select test cases when testing a software system, or part of one.

We choose a few cases that represent general behaviour and then several that explore

special behaviour at the limits.

Mechanisms are used to explain or explore the design intention. In many

development projects the construction of mechanisms is the primary technique for

detailed implementation design. Everything that can be said in a mechanism can be

said generically in a statechart and type view, but it is often easier both to create a

design and to understand it using mechanisms. Mechanisms can be quite expressive,

using their own syntax rules to show the results of computation, but in many cases

mechanisms obtain most value when used more informally. Although a mechanism

diagram can be checked for consistency against other, more formal views, it need not

be fully understandable in isolation. We often describe mechanisms as an informal

technique but they do have a well formulated syntax; they are informal in the sense

that, as examples, they are only very rarely a complete description of behaviour.

Mechanisms use the basic syntax of object views, introduced in chapter 2. Each

mechanism diagram contains the following:

• Two or more rounded-rectangles representing objects in a scenario.

• Lines between objects representing instances of associations (which may be

temporary).

• Annotated arrows lying alongside associations representing messages sent using

the communication path of the association.

• A single arrow unrelated to any association representing the initial message in

the sequence. The sender of this message is unknown. The mechanism ends

when control is returned to the sender of this message.

7.2.1 The anatomy of operations

Figure 7.1 shows the specification type view of an example system that monitors the

prices of company shares, introduced in chapter 6.

Figure 7.2 shows statecharts for the Share, Sector, Exchange, Mindable and Minder

types. Notice how priceChange events are detected by sectors and exchanges as well

as shares so that they, too, can generate priceCheck events. This allows minders to

 7.2 Mechanisms 155

mind sectors and exchanges. The priceCheck events are detected by minders as the

trigger to recheck their movement limits1.

Invariants:
movement =

sum share.movement

Share-S

price : Number

Invariants:
optional price

Sector-S Exchange-S

ShareChange-S

price : Number
date : Date
time : Time

[seq]

Mindable-S

movement : Number

Minder-S

limit : Number
desc : String

Invariants:
limit >= 0

Invariants:
movement =

sum sector.movement

minded

Figure 7.1 Specification model type view of share system

We are now going to use mechanisms to explore the implementation design of this

system. A mechanism begins with the arrival of a specific message that triggers an

operation. We will assume that the externally generated events shown as detected in

the specification model become messages in the implementation model, sent to the

appropriate concept domain object. This is an over-simplification, as illustrated in

chapter 11, but it will suffice for these examples. The processing of priceChange

messages, corresponding to priceChange events, is clearly a key mechanism, and we

will focus on it. The priceChange message will be sent to a Share object; we need to

determine the action of a share on its receipt.

In general, we can divide the necessary behaviour of an object on receipt of a state-

changing message, such as priceChange, into six parts:

1. checking of guard conditions;

2. fulfilment of post-conditions;

3. fulfilment of system invariants (and determination of result, if any);

4. forwarding of the message to other objects;

5. invocation of subsequent behaviour of other objects;

6. return result (if any).

1The post-condition for the priceChange event in the textual part of the Share statechart shows the creation of a
new ShareChange object and its concatenation on to the end of the sequenced association.

The minder could detect the priceChange event instead but this would complicate the specification of the minder
because it needs to refer to the movement property of the object being minded, such as a share. This property is
changed by the priceChange event and so its new value is not established until after the event.

156 Describing the implementation

Share-S

Events:
priceChange(s : Share, p : Number, d : Date, t : Time) /

[price’ = p]
[shareChange’ = shareChange � [new ShareChange(p, d, t)]]

Generations:
priceCheck(Mindable)

Creation:
() : ()

Unpriced Priced

priceChange

priceChange(p) / [movement’ = movement + p - price]
priceCheck(self)

Mindable-S

Creation:
() / [movement’ = 0]

Armed

Events:
priceCheck(m: Mindable [m = minded])
cancel(m : Minder)

Allow:
priceCheck

Active

Minder-S

priceCheck [abs minded.movement > limit] / minderAlarm(self)

priceCheck [abs minded.movement <= limit]

cancelTriggered

Generations:
minderAlarm(Minder)

Creation:
(l: Number, s: String) / [limit’ = l] [desc’ = s]

Sector-S

Events:
priceChange(s : Share, p : Number, d : Date, t : Time [s ∈ share]) /

priceCheck(self)
Allow:

priceChange
Generations:

priceCheck(Mindable)
Creation:

() : ()

Exchange-S

Events:
priceChange(s : Share, p : Number, d : Date, t : Time [s ∈ sector.share]) /

priceCheck(self)
Allow:

priceChange
Generations:

priceCheck(Mindable)
Creation:

() : ()

Figure 7.2 Specification model statecharts for share system

 7.2 Mechanisms 157

It is easy to see how these correspond to elements of the specification model:

1. transitions and guards on the statechart;

2. post-conditions on the statechart;

3. invariants on the type view;

4. more than one statechart detecting an event2;

5. and (6) generated events3.

This correspondence helps greatly with the construction of implementation models.

Sometimes, the correspondence will really be as close as these lists imply, and we will

be able to spot it easily. In other cases, the needs of implementation will demand a

looser correspondence. These lists are a guide only.

Frequently, the same event is detected when the object is in different states and

different things must happen. The question as to whether this is implemented as a

single operation that checks the current state or as a family of operations that are

selected in some way concerns the implementation of state machines and we will not

consider this further at this point. We will assume that the same operation name

applies in all cases and the mechanisms we draw will assert particular states and show

the behaviour in a scenario where those states exist.

Filters will normally have no direct correspondence in the implementation model;

we assume that messages will be sent only to the objects interested in them. This

implies that consideration of filters is the responsibility of the client, not the supplier.

Checks that pre-conditions are valid may or may not be implemented as code.

Depending on the implementation language, they are more likely to be implemented as

assertions.

7.2.2 A simple mechanism

We know, from the specification model post-conditions, that when a Share object

receives a priceChange message it must adjust its price and, if in the Priced state, its

movement properties. This is likely to be accomplished by changing the values held in

variables – possibly indirectly by invoking private operations – but these internal

changes are a private, local matter and exactly how they are performed is not our

concern in the implementation model. The main reason for this is that we still wish to

be uncommitted to the exact way in which properties are implemented. Our

mechanism that describes the processing of priceChange messages need not describe

these internal changes.

2When an event is detected in more than one specification model statechart we must choose how to sequence the
processing. Message-forwarding is one technique we can use, where the first object to be notified of a stimulus
forwards the notification to others. This is discussed in more detail in chapter 11.

3We say that returning the result of a message corresponds to a generated event because, in the specification model,
internal events are sometimes used to achieve information flow between objects.

158 Describing the implementation

We note from the specification model that sectors and exchanges have type

invariants which depend on share movement properties. The implementation model

must decide how to establish these invariants. Our starting point should be the

assumption that one object cannot predict the implementation strategy of another, so

Share objects cannot predict whether sectors intend to implement their movement

properties as data or functions. This is important because if the sector implements

movement as data it must adjust the value every time a share changes its price. In our

first attempt at this mechanism, shown in figure 7.3, we show the share explicitly

notifying the sector that its price has been adjusted.

(Share)
[in Priced]

(Sector)

(Exchange)

priceChange
(1) priceAdjust(adj)

(1.1) priceAdjust(adj)

Figure 7.3 Simple mechanism

Figure 7.3 shows a scenario involving three objects, a share, a sector and an

exchange. In the mechanism we show only those objects in which we are interested:

the sector might have more than one share associated with it; either we don’t wish to

show the effects of those other shares or they don’t make any difference to the

mechanism. We assert, using a logical constraint, that the share begins the scenario in

the Priced state. Of course, we know that shares never leave the Priced state but we are

making the point that constraints shown on mechanisms show the state of the scenario

at its commencement. The lines between the share, sector and exchange represent

associations that exist between the objects. We can predict that such associations will

exist from the specification model; they are confirmed by our need to send messages

along them in the mechanism. The message flow is shown in annotations alongside

arrows, showing the direction of flow. The annotations begin with a sequence number,

showing the order in which the messages flow; the predominantly left-to-right flow is

unintentional and has no significance.

The mechanism begins with the arrival of a priceChange message at the share. This

message has a parameter but we haven’t shown it; this is fine provided it is

unambiguous. There might be several implementations of priceChange for the Share

type, with different parameter signatures, and this would make the mechanism

ambiguous. When we have a more complete implementation model we can compare

 7.2 Mechanisms 159

our mechanism against the type view to check this. The second message is a

priceAdjust message sent by the share to its sector. This time we have shown the

parameter, using the name adj. We deduce the meaning of this name by considering

the name-space of the sending object. It has no properties or associations called adj;

therefore, we conclude that adj is a variable introduced into the name-space of the

receiver (the sector object) for the purposes of this mechanism. The variable has not

been bound to any particular value – it should have a value equal to the change in

price4. The mechanism would be in error if the sector was using the name adj for a

property or association role. Mechanism variables, like adj, have no meaning outside

the mechanism.

The sector can do what it will with this priceAdjust message; if it is implementing

its movement property as data it can use the message parameter to recompute it. We

must also establish the exchange’s invariant in the same manner, either by getting the

share to send it a message directly or, as here, by getting the sector to pass on the

priceAdjust message. This message is the third and final message in the mechanism.

The adj variable is used by the sector to pass the required adjustment to the exchange5.

7.2.3 Object creation and variable assignment

The mechanism just discussed is concerned with item 3 in the list above, fulfilment of

system invariants. Can we use a mechanism to illustrate item 2, the fulfilment of post-

conditions? We have said that we will not consider in mechanisms any internal

messages sent (to self) for the purpose of modifying properties. But we can, and

should, show the creation of new associated objects, such as ShareChange objects,

indicating the moment of their creation in the message flow. Figure 7.4 shows this.

Now we show the parameters of the priceChange message because we wish to

reference them in the mechanism. The mechanism shows that the new ShareChange

object is created before the priceAdjust message is sent. We have annotated the arrow

with the parameters of the creation operation invoked, using the keyword new to show

that it is a creation operation. The dashed association line between the Share and the

ShareChange indicates that the association did not exist at the beginning of the

mechanism. We have also shown the binding of the adj variable, using an assignment

expression. These expressions allow us to give a name, for use by the receiver, to an

expression written using names taken from the sender, such as price.

Expressions in message parameters can contain any names in scope for the sender:

• the names of the sender’s properties;

• the role names of the sender’s associations;

4A clever tool should be able to spot unbound variables and warn the designer.

5If we knew that sectors and exchanges computed their movement properties on demand, rather than holding them
as data, we might decide, as an optimisation, not to notify them of price changes. This needs careful consideration
because it might affect other parts of the mechanism.

160 Describing the implementation

(Share)
[in Priced]

(Sector)

(Exchange)

priceChange(p, d, t)

(2.1) priceAdjust(adj)

(ShareChange)

(1) new (p, d, t)

(2) priceAdjust(adj := p - price)

Figure 7.4 Mechanism with object creation

• the names of any variables introduced into the sender’s name-space during the

mechanism up to that point.

In particular, note that they cannot include navigation expressions that represent

message-sending; complicated expressions must be broken down into their constituent

message-sends.

7.2.4 Forwarding

We note from the specification model that sectors and exchanges also detect

priceChange events. In our implementation model design, it is the share which is told

about this event, by being sent a priceChange message. Therefore, the share must

forward notification of the event to the sector and the exchange. We can extend our

mechanism to show this, as in figure 7.5.

In the specification model, sectors and exchanges have filters to select the relevant

priceChange events. In the implementation model, the share uses its association link to

identify the relevant sector; the sector does the same to identify the relevant exchange.

7.2.5 Subsequent processing

We must now consider how we will implement the generated priceCheck events shown

in the specification model. The most common implementation is as a single message,

sent to the interested object. In this case, there may be more than one minder for each

share, sector and exchange (the association from Mindable to Minder is multiple), so we

will need to send a series of messages, one to each minder. A mechanism is an

example scenario, so we have to decide how many minders there will be in it. We

could decide to show none but it would be pointless; that is really what we have done

in figure 7.5. We could decide to show a hundred minders for each of the share, sector

 7.2 Mechanisms 161

and exchange but the diagram would be impossibly large and it wouldn’t tell us

anything more than we could learn by considering just two or three. We could draw a

whole family of mechanisms, showing different numbers of minders; this would be

appropriate if the behaviour differed depending on their number. In figure 7.6 we have

chosen to show two minders for the share, one for the sector and none for the

exchange.

(Share)
[in Priced]

(Sector)

(Exchange)

priceChange(p, d, t)

(2.1) priceAdjust(adj)
(3.1) priceChange(p, d, t)

(ShareChange)

(1) new (p, d, t)

(2) priceAdjust(adj := p - price)
(3) priceChange(p, d, t)

Figure 7.5 Forwarding notification

7.2.6 Message ordering

We generally design our implementation so that operations such as priceChange carry

out their processing in the order of the items in the list shown earlier, on page 155. We

can see how the behaviour of the share in figure 7.6 corresponds to items in this list:

1. checking of guard conditions: none (local processing only);

2. fulfilment of post-conditions: creation of new ShareChange object;

3. fulfilment of system invariants: priceAdjust message sent to the sector;

4. forwarding to other objects: priceChange message sent to the sector;

5. invocation of subsequent behaviour: priceCheck messages send to minders;

6. return result: not applicable.

Thus, the sending of the priceCheck messages by the share to its minders is done after

sending the priceAdjust and priceChange messages6. The same logic applies to the

sector and the exchange, so they will send priceCheck messages to their minders (if

they have any) after doing any other processing associated with priceChange. The

order in which the messages are sent to the minders is quite arbitrary because their

6At first sight it seems excessive to send two messages to the sector (priceAdjust and priceChange) when just one
would do. The design could be optimised to send just one message but this needs care because, as we will see in
chapter 9, the capability of the share to respond to further messages is not the same at the moment it sends
priceAdjust as it is when it sends priceChange.

162 Describing the implementation

association with the share forms a set. Since message-sending is a serial activity we

have to indicate some order7. Although we haven’t used them in the mechanism, we

have given the minders ‘names’: m1, m2 and m3. Of course, objects don’t have names,

they are distinguished by their identities, but it is often useful to attach these informal

names to objects in mechanisms so that they can be used to identify objects as the

subjects of message parameters, for example8.

(Share)
[in Priced]

(Sector)

(Exchange)

priceChange(p, d, t)

(2.1) priceAdjust(adj)
(3.1) priceChange(p, d, t)

(ShareChange)

(1) new (p, d, t)

(Minder)
m1

(Minder)
m2

(Minder)
m3

(3.2) priceCheck
(4) priceCheck (5) priceCheck

(2) priceAdjust(adj := p - price)
(3) priceChange(p, d, t)

Figure 7.6 Implementing the generated events

7.2.7 Partitioning mechanisms

Figure 7.6 is useful and correct even though it doesn’t say everything that could be

said; in particular, it doesn’t show how minders react to priceCheck messages. A

mechanism doesn’t have to show every message sent; a mechanism showing hundreds

of message-sends would not be useful. Instead, we break down lengthy sequences into

more manageable parts, each part being triggered by one message. This also gives us

the flexibility to show variations in the message pattern without reproducing the entire

mechanism many times. In figure 7.7 we show two mechanisms in which a minder

receives the priceCheck message.

In the first (top) mechanism, we assert that the minder is in the Armed state and has

a limit of 10, while the object being minded, shown only as conforming to the Mindable

7This illustrates clearly why we think message-sending is an inappropriate concept for more abstract models, such
as specifications and models of the world.

8We know they are ‘names’ because they are not enclosed in square brackets.

 7.2 Mechanisms 163

type, has a movement of 8. Referring back to the specification model statechart for the

minder, shown in figure 7.2, we can see that it becomes triggered and generates an

alarm event only if the movement exceeds the limit. The implementation of the

priceCheck operation for the Minder type must first check the guard condition, which

involves interrogating the minded object to ascertain its movement property. This is

itself a message-send: we obtain the values of properties (and associations) by sending

messages, with the same name as the property, to the relevant object. The message

numbered (1) in the mechanism is this message. In the first mechanism the conditions

for generating an alarm are not met, but the minder doesn’t know that until it has found

out the movement value.

(Mindable)
[movement = 8]

(1) movement(Minder)
[limit = 10]
[in Armed]

priceCheck

(Mindable)
[movement = 12]

(1) movement(Minder)
[limit = 10]
[in Armed]

priceCheck

(AlarmStore)

(2) minderAlarm(self)

Figure 7.7 Two scenarios for price checks

In the second (bottom) mechanism the conditions for generating an alarm are met.

‘Generating an alarm’ translates into sending a message to another object, in this case

an AlarmStore. The identity of the minder, written as self, is sent as the parameter. By

passing the identity of the minder, the AlarmStore object has full access to the

properties of the minder and, indirectly, its associated objects. Passing the identity of

the object rather than specific properties is often preferable in situations like this

because it gives the receiver more flexibility; the interface is less likely to require

change if the requirements of the AlarmStore change. The disadvantage is that it

increases the coupling between the two types. Figure 7.8 shows an alternative

interface, and also illustrates some other features of mechanisms.

164 Describing the implementation

(Mindable)
[movement = 12]

(1) move := movement(Minder)
[limit = 10]
[in Armed]

priceCheck

(AlarmStore)

(2) minderAlarm(desc, limit, move)

Figure 7.8 Sending particular information to the alarm store

7.2.8 Assigning message results

We have already shown variables being assigned to parameter expressions in order to

make the parameter available in the name-space of the receiver. In figure 7.8 we are

using an assignment to bind the result of a message-send – the movement message – to

a variable in the name-space of the sender. If the sender has not used that name before,

the variable is also introduced9. The minder is then using this variable to forward the

result of the movement message, together with two of its own properties, to the

AlarmStore object. Note that we cannot write this message-send as:

minderAlarm(desc, limit, mindable.movement)

because this implies a message-send – the very movement message shown in the

mechanism. Sending the minderAlarm message introduces the names desc, limit and

move into the name-space of the AlarmStore object as variables. What we have written

is really a shorthand for:

minderAlarm(desc := desc, limit := limit, move := move)

and the usual rules for name uniqueness apply.

7.2.9 Using associations

Sometimes we use association lines on mechanism diagrams to show structure, rather

than paths for messages.

In figure 7.9 we invent a scenario where a share is told to adopt a ‘suspended’ state

by sending it a suspend message. It is the duty of the share to inform its exchange that

it is suspended but it has no direct association with the exchange. It obtains the

9Although mechanism variables are not formally declared anywhere, their type can be deduced and, in principle,
their use can be checked for consistency.

 7.2 Mechanisms 165

identity of the exchange by asking the sector, to which it does have a direct association.

By sending the exchange message to the sector the share obtains a temporary

association with the exchange, an association that did not exist at the start of the

mechanism and one not shown on the type view. It is indicated in the mechanism by a

dashed line. The association line between the sector and the exchange is drawn to

indicate that the Exchange object with which the share has its temporary association is

the same object as that known by the sector.

(Share) (Sector)

(Exchange)

suspend
(1) exchange

(2) suspend(self)

Figure 7.9 Mechanism with temporary association

7.2.10 Showing results

For a moment, let us assume that sectors do not hold their movement property as data

but compute it on demand. Figure 7.10 shows a mechanism where a sector has two

associated shares and receives a movement message. The results of sending the

movement messages to the shares are assigned to two variables, in the scope of the

sector, called x and y. The result passed back to the sender of the original movement

message (message (1)) is shown in terms of x and y by placing an expression after the

message name, separated from it by a colon. This expression can use any names in

scope for the receiver.

(Share) (Sector)

(2) y := movement

(Share)

(1) x : = movement

movement : x + y

Figure 7.10 Showing message result

166 Describing the implementation

7.2.11 Message-sequence diagrams

Another way of representing a mechanism is to use a message-sequence diagram. In

these diagrams, each object in the scenario is represented by a horizontal line, with

message-sends being shown by vertical lines and message-processing by horizontal

lines10.

(Share)

(ShareChange)

(Sector)

(Exchange)

m1

m2

m3

priceChange

new

priceAdjust

priceAdjust

priceCheck

priceCheck

priceCheck

priceChange

priceChange

Figure 7.11 Message-sequence diagram

Figure 7.11 describes the same mechanism as shown above in figure 7.6. Notice

how the objects are identified either by their type or by their ‘name’. These diagrams

are not quite so expressive because they lack the idea of associations. On the other

hand, they do make the message flow and control passing very clear.

Message-sequence diagrams are not usually drawn to any scale – the horizontal axis

does not accurately represent time – but they could be used in that way if desired.

Messages sent to self appear infrequently in mechanisms because we don’t usually

show how an object modifies its own state. The most common need to show messages

to self is when a message implements a generated event that is detected by the same

object. Such messages can be shown easily in either the standard or message-sequence

form of mechanism diagrams. In the standard, object view form, they are shown using

arrows that both leave and enter the same object; in the message-sequence diagram,

they are shown by a line slightly displaced from the object’s main horizontal line.

7.3 Type views of the implementation model

As with essential and specification models, an implementation model can be expressed

through type views that depict object types and their relationships. Type views in the

implementation model are similar to those in the specification model. The same

general ideas and notations apply but the detailed interpretation is different.

10Some people prefer to rotate these diagrams, with message-sends being horizontal lines.

 7.3 Type views of the implementation model 167

7.3.1 Observers and updaters

The most important difference between the specification model and implementation

model type views is that the concept of properties, as listed in the lower part of the type

box, is replaced by listings of the observer and updater operations defined for the type.

An observer operation is one which does not change the state of the system in any

way, it merely obtains information for the sender. An updater operation can change the

state of the object executing it and, indirectly, the state of other objects. We

distinguish observers and updaters for two reasons. First, it is updater operations that

will take the place of events as the triggers for transitions in statecharts, as we will see

shortly. Second, having a clear distinction is a great help in designing multi-threaded

systems, as explained in chapter 9. Unlike some authors, we do not require updaters to

be procedures rather than functions; that is, we allow updaters to return a result. So an

updater with a return type is that much denigrated animal, a function with side-effects.

While we accept all the arguments concerning their conceptual impurity, we, along

with most people we’ve met, find them very useful.

Figure 7.12 shows the implementation model type view for the share monitoring

system described earlier. Comparing it with the specification model type view shown

in figure 7.Error! Bookmark not defined., we see that the properties have become

observer operations, whereas the updaters reflect events. This correspondence is

examined in more detail in chapter 10. Also, note that the suffix -I is appended to the

type names to indicate an implementation model.

Observers:
exchange

Updaters:
priceAdjust(Number)
priceChange(Number, Date, Time)

Invariants:
movement =

sum share.movement

Share-I

Observers:
price : Number

Updaters:
priceChange(Number, Date, Time)
suspend

Invariants:
optional price

Sector-I
Exchange-I

ShareChange-I

Observers:
price : Number
date : Date
time : Time

[seq]

Mindable-I

Observers:
movement : Number

Updaters:
priceAdjust(Number)
priceChange(Number, Date, Time)
suspend(Share)

Invariants:
movement =

sum sector.movement

Minder-I

Observers:
limit : Number
desc : String

Updaters:
priceCheck

Invariants:
limit >= 0

minded

Figure 7.12 Implementation model type view of the share system

168 Describing the implementation

7.3.2 Observing associations

We assume that an object can navigate all its associations, unless they end with a cross

or a question mark. Therefore, an object may use freely, within updaters and

observers, the results of navigating such associations.

This does not imply that the results of navigating associations from an object are

available to the object’s clients, that is, they are not observable by default. If we wish

to make an object’s association visible to its clients we must include in the type box an

observer operation specifically for that purpose. The name of this observer is

frequently chosen to be the same as the role name of the association being observed, as

with the exchange observer of the Sector type in figure 7.12.

We can extend the Sector type, as in figure 7.13, to define an observer that returns

the set of shares in a sector. If we choose the name of the observer to be the same as

the role name, as here, we do not need to specify the return type, nor an invariant

linking the observer with the association11. The return type of the observer operation

for an association is determined by the multiplicity constraints. For a single-valued or

optional association the return type is the destination object type – for an optional

association the result might be nil, so the observer has an implicit optional invariant.

For multiple associations the return type will be a collection (set, sequence or bag) of

the destination type.

Observers:
share

Updaters:
priceAdjust(Number)
priceChange(Number, Date, Time)

Invariants:
movement = sum share.movement

Share-I

Observers:
price : Number

Updaters:
priceChange(Number, Date, Time)
suspend

Invariants:
optional price

Sector-I

Figure 7.13 Observing associations

11If we had chosen a different name we would need to specify the return type and an invariant, for example:

 Observers:

 theShares : set of Share

 Invariants:

 theShares = share

 7.3 Type views of the implementation model 169

7.3.3 Navigation expressions and messages

Navigation expressions through the implementation model represent message-sending

sequences. For example, given s : Share:

 s.sector.exchange

means ‘send the sector message to the share and send the exchange message to its

result.’

 s.minder.priceCheck

means ‘send the minder message to the share and send the priceCheck message to each

object in the resulting set, in some undetermined order.’ If s.minder yielded a

sequence, the messages would be sent in the sequence order. All the navigation

expressions discussed in earlier chapters can be interpreted in this way. Where no

receiver is specified for a message, self is assumed.

7.3.4 Super-type name clashes

In chapter 3 we pointed out the possibility that there may be name clashes between

super-types. This applies equally to the implementation model, with the further

complication that there may be clashes in the names of updater operations as well as

observers and role names. As before, we take the simple position that name clashes are

not permitted, and the design must be changed to eliminate them. In practice, we need

rather more flexibility than that, and we outline possible approaches to this problem in

chapter 12.

7.3.5 Structural conformance

The rules for structural conformance between a type and its sub-types given earlier in

the book apply equally to the implementation model. The general principle is that an

object which sends a message to another object conforming only to the super-type will

be able to send the same message to an object conforming to a sub-type and will never

be ‘surprised’ by the result. To be more precise:

1. The sub-type must provide the same observers as the super-type, or a superset

thereof.

2. The sub-type must provide the same updaters as the super-type, or a superset

thereof.

170 Describing the implementation

3. The return type of a sub-type operation must be the same as, or a sub-type of, the

return type of the super-type operation12.

4. The parameter types of a sub-type operation should be the same as the parameter

types of the super-type operation13.

A discussion about behaviour conformance between types in the implementation

model appears in chapter 8.

7.3.6 Meaning of invariants

When we place an invariant on a type in an essential or specification model we mean

that the invariant holds at all times. This is reasonable because all state changing in

these models is considered to be instantaneous. In an implementation model we need

to take into account the time taken to process messages. State changing is not

instantaneous. Consider the share monitor example used earlier, whose type view is

shown in figure 7.12. If we took a snapshot of this system during execution the type

invariants of Sector and Exchange might not hold because one or more share objects

might be in the process of changing their prices.

Type invariants in the implementation model can only show intention. If we were

to cut off the stream of events being detected by the software system and wait until all

the outstanding events had been processed completely, then the type invariants should

hold. We cannot expect them to hold at all times during operation.

7.3.7 Visibilities

Mechanisms and, as we will see shortly, statecharts show messages being sent to

objects. To send a message to an object we must know its identity. An operation

knows the identity of an object to which it wishes to send a message either by:

• being passed the identity as a parameter;

• obtaining it by navigating an association;

• obtaining it as a result from an updater or observer;

• itself creating the object.

12The principle of co-variant result types.

13We don't feel so strongly about this rule. Although perfectly type-safe, this rule might be considered overly
restrictive. It would be equally type-safe to allow contra-variant parameter types, where the parameter type in the
sub-type is a super-type of the parameter type in the super-type. In the Eiffel programming language, parameter
types can be co-variant but not contra-variant; this might not be theoretically type-safe but is claimed to be more
useful in practice. Requiring the types to match exactly at least makes it clear when an operation is being
overridden.

 7.3 Type views of the implementation model 171

If any operation of an object type obtains an identity by navigating an association we

say that the association is visible in the direction navigated. If we want, we can show

this visibility by annotating the type view with an arrowhead on the association.

Figure 7.14 shows a simple mechanism and the related type view. In the

mechanism the share object sends a message to a minder using the association called

minder that exists between them. The share must be navigating this association to find

the identity of the minder: it requires visibility of the association. This is shown on the

type diagram. What should we infer from the lack of an arrowhead at the other end of

the association? It would be wrong to infer that no visibility will exist between

minders and mindables. All we can say is that, given the sole mechanism shown in the

diagram, visibility is not needed. The lack of an arrowhead means we haven’t decided

yet.

As we add new mechanisms we can say more about the necessary visibilities.

When we extend the mechanism of figure 7.14 we introduce an additional visibility, as

shown in figure 7.15.

It is useful to have a clear picture of the necessary visibilities because they influence

the implementation techniques considerably. Sometimes we might want to revisit

visibility decisions in the light of performance trade-offs or concurrency constraints.

Mindable-I

Observers:
movement : Number

Minder-I
minded

(Share) (Minder)

priceChange
(1) priceCheck

Share-I

Observers:
price : Number

Updaters:
priceChange(Number, Date, Time)
suspend

Invariants:
optional price

Observers:
limit : Number
desc : String

Updaters:
priceCheck

Invariants:
limit >= 0

Figure 7.14 Association visibility

Having discovered (or defined) the necessary visibilities we must ensure that the

creation operations are sufficient to create them. Figure 7.15 tells us that each minder

must know the identity of its minded object and each mindable must know the

identities of its set of minders. This knowledge will not be acquired automatically so

172 Describing the implementation

mechanisms must be designed to achieve it. In figure 7.16 we show a creation

operation for minders with the object to be minded as a parameter and add an updater

to the Mindable type to allow a minder to be added to the set. The mechanism shows

how this works.

Mindable-I

Observers:
movement : Number

Minder-I
minded

(Share) (Minder)
priceChange

(1) priceCheck

(2) movement

Share-I

Observers:
price : Number

Updaters:
priceChange(Number, Date, Time)
suspend

Invariants:
optional price

Observers:
limit : Number
desc : String

Updaters:
priceCheck

Invariants:
limit >= 0

Figure 7.15 Bi-directional association visibility

Mindable-I

Observers:
movement : Number

Updaters:
addMinder(Minder)

Minder-I

Observers:
limit : Number
desc : String

Updaters:
priceCheck

Invariants:
limit >= 0

Creation:
(Number, String, Mindable)

minded

(Share)
shr

(Minder)

(1) addMinder(self)

new(n, s, shr)

Share-I

Observers:
price : Number

Updaters:
priceChange(Number, Date, Time)
suspend

Invariants:
optional price

Figure 7.16 Implementing associations

 7.4 State views of the implementation model 173

It is necessary to consider how each association is to be created, and to add creation

operations and other updaters to support their creation. While we recognise this

necessity, we don’t needlessly complicate our examples by making such considerations

in every case. For that reason some of our examples may be incomplete in this respect.

The addition of arrowheads to associations is a useful, but relatively informal, way

of annotating design decisions and discoveries. We do not claim that their use is

essential; we suggest that it may be helpful. The addition of arrowheads can be treated

as an intermediate step towards further refinement of associations: at some stage we

may wish to place question marks at the ends of associations with no arrowhead, and

then to remove the arrowheads completely.

7.4 State views of the implementation model

The dynamic state behaviour of every object type in an implementation model can be

described using a separate statechart. We interpret the absence of a statechart for an

object type to mean that all of its operations are valid at all times14. Our interpretation

of statecharts in the implementation model is very different from that in the

specification model.

Transitions in implementation model statecharts are triggered by the arrival of

updater messages. An unguarded transition for a message leaving a state means that it

is valid for objects of that type to process that message in that state. It is invalid for an

object to process a message in a state where there is no transition for the message or

the guards on transitions prevent any transition from being taken. As with events in

the specification model, the behaviour of an object that attempts to process an invalid

message is undefined15.

It is a design error to construct a statechart that would allow a message to trigger

more than one transition.

The messages that trigger transitions will always be updaters because only updaters

may change the object. It is assumed that observers are valid in all states but this may

be modified using the ‘allow’ feature, as described later in this chapter.

In figure 7.17 we show an implementation model statechart for the Share type used

in the earlier examples. We know it is an implementation model statechart because it

has -I after the type name.

As in the specification model, the share has two states; the priceChange message

causes a transition between them. Post-conditions are shown in the normal way, but in

the implementation model they are specifying the relationships between the results of

observer operations, not properties. The term price means the value that would have

been returned by the price observer at the time message-processing began, and the term

price’ means the value that will be returned by the price observer after this message has

14But their instant availability might be limited by concurrency constraints – see chapter 9.

15Later in the chapter we will discuss the use of exceptions to signal invalid messages, but this does not alter our
fundamental position that the behaviour is undefined.

174 Describing the implementation

been processed. Notice that the textual part of the statechart contains no list of

messages being handled. This list already appears in the type view and there is no need

to repeat it here. We only list updaters in the textual part when we wish to add

information.

Share-I

Creation:
() : ()

Unpriced Priced

priceChange (p : Number, d : Date, t : Time) / [price’ = p]
[shareChange’ = shareChange � [new ShareChange(p, d, t)]]

priceChange (p : Number, d : Date, t : Time) / [price’ = p]
[movement’ = movement + p - price]
[shareChange’ = shareChange � [new ShareChange(p, d, t)]]

Figure 7.17 Implementation model statechart

7.4.1 The processing sequence

As we saw earlier in this chapter, the action of an updater operation can be divided into

the following six parts:

1. checking of guard conditions;

2. fulfilment of post-conditions;

3. fulfilment of system invariants (and determination of result, if any);

4. forwarding of the message to other objects;

5. invocation of subsequent behaviour of other objects;

6. return result (if any).

The purpose of the first three parts is to process the message sufficiently to bring the

system into a consistent state. We call the section of the updater that performs these

three parts the secured section. The remaining parts of the updater we call the relaxed

section16. Since message-processing is not instantaneous, we need to define exactly

when the state change indicated by a transition occurs. When the operation reaches the

end of the secured section the system is in a consistent state; all post-conditions and

system invariants will hold. We define the state change to occur at the end of the

secured section. The relaxed section is performed once the object has entered its new

state. To ensure system integrity, it is important that once an object has begun

processing an updater, it does not begin processing another message until it has at least

entered its new state. The concurrency rules described in chapter 9 ensure this, and

16It will become clear why these names have been chosen when you read chapter 9.

 7.4 State views of the implementation model 175

guarantee synchronous behaviour of implementation model statecharts, even in the

presence of multiple threads of control. They ensure that on object will never begin

processing another message while executing a secured section. Therefore, we can

validly claim that a state machine can never be processing more than one transition at a

time.

Imagine that a share object in the Unpriced state receives a priceChange message.

The object will begin the priceChange operation but it is still in the Unpriced state.

Once it has completed the secured section of the updater it enters the Priced state and

the relaxed section is executed.

7.4.2 Showing message-sending on statecharts

We can simplify figure 7.17 by factoring-out the common post-conditions and placing

them in the textual part of the statechart, under an Updaters: heading. Messages appear

under this heading only if we want to attach post-conditions or other information to

them. We can also show on the statechart more details of the processing of

priceChange messages, using information taken from the mechanisms designed earlier,

such as the one in illustrated figure 7.6. The resulting statechart appears in figure 7.18.

Notice how the messages sent in the secured section of an updater appear before the

post-conditions, while those sent in the relaxed section appear after the post-

conditions. This reinforces the idea that the purpose of the secured section is to

establish a consistent state for the system.

Share-I

Creation:
() : ()

Updaters:
priceChange(p : Number, d : Date, t : Time) /

[price’ = p]
[shareChange’ = shareChange � [new ShareChange(p, d, t)]]

Unpriced Priced

priceChange

priceChange(p, d, t) / sector.priceAdjust(price’ - price)
[movement’ = movement + p - price]
sector.priceChange(p, d, t), minder.priceCheck

Figure 7.18 Statechart showing processing details

Although event generation and message-sending are clearly different, the intention

here is to make the overall behaviour of an implementation model statechart

comparable to (but not necessarily in direct correspondence with) that of a

specification model statechart. The effects of sending messages after the post-

176 Describing the implementation

conditions mirror that of generating internal events. In both cases the events/messages

that are generated/sent can cause further transitions in the same chart.

If a transition shows only message-sends after the slash, with no post-conditions, we

assume that all the messages are sent in the secured section, and that there is no relaxed

section. Empty brackets can be used to delimit the secured and relaxed sections if

there are no post-conditions.

7.4.3 Pre-conditions

Pre-conditions may be shown against updaters in the textual part of the statechart,

using the same syntax as for events in the specification model. If an object receives a

message and the pre-conditions fail to hold, the behaviour of the object is undefined.

Pre-conditions in the implementation model often indicate expectations of objects in

other domains.

7.4.4 Guards

As we remarked earlier, it is a design error if a statechart makes it possible for a

message to trigger more than one transition. Therefore, the guards on transitions for

the same message from the same state must not be constructed so that they could both

be true.

There are limits on the expressions that can appear in guards. They cannot use

updater operations, only observers. Even so, care must be taken when writing

expressions that contain more than one observer on other objects because we do not

require guards to be computed atomically; because of concurrency the other objects

might change state during guard evaluation.

If all the guard expressions on transitions for a message from a state are false no

transition can be taken and the behaviour of the object receiving the message is

undefined17.

7.4.5 Variables

Statechart variables may be declared in the outermost textual part of an implementation

model statechart, as with statecharts in other models. In the implementation model,

variables can also be declared on a transition, when their scope and life-time is the

single transition on which they appear.

17Unless the message appears in a relevant ‘allow’ list.

 7.4 State views of the implementation model 177

Variables are useful because, uniquely in statecharts, they can be assigned the

results of expressions. This commonly arises when the result of one message-send is

used as a parameter to several others. For example:

 var := obj1.getValue,

 obj2.setValue(var),

 obj3.setValue(var)

Variables can be used in post-conditions:

 var := obj1.getValue,

 obj2.setValue(var),

 obj3.setValue(var)

 [v’ = var’]

The prime character on var’ is important. It shows that the result returned by the

observer v after executing the secured section of the operation to which this fragment

relates will be equal to the new value of the variable var, that is, the value of var at that

time. Without the prime character we would be referring to the value var had when

processing began, which is undefined for variables declared on a transition.

Assignment to transition variables can appear anywhere in the transition.

Assignment to statechart variables cannot be permitted in the relaxed section because

the new state of the object must be fully established before leaving the secured section.

7.4.6 Post-conditions

Post-conditions in implementation model statecharts are logical assertions of the state

of an object after executing the secured part of an operation. They are not executed, so

the idea of sending updater messages or creating objects as part of their expressions

seems very strange. Sending updater messages that do not return a result is never

permitted, but we often see updaters which do return a result used in post-condition

expressions. Given that setValue is an updater, what should we make of:

 [v’ = obj.setValue(v)] ?

We conclude that this is a shorthand for using a transition variable:

 temp := obj.setValue(v) [v’ = temp’]

178 Describing the implementation

Things become more complicated when we consider18:

 [v’ = obj.setValue(v)] [x’ = obj.setValue(v)]

This could mean either:

 temp := obj.setValue(v)

 [v’ = temp’] [x’ = temp’]

or:

 temp1 := obj.setValue(v),

 temp2 := obj.setValue(v)

 [v’ = temp1’] [x’ = temp2’]

or even:

 temp1 := obj.setValue(v),

 temp2 := obj.setValue(v)

 [v’ = temp2’] [x’ = temp1’]

These alternatives would give different results if obj.setValue(v) gave a different

answer each time it was called. Ambiguous constructions such as this are not allowed.

If the order matters, it should be stated explicitly. Updaters (and object creations) can

be used in post-conditions only if either:

1. there is only one in the expression; or

2. it doesn’t matter in which order they are performed.

Since the post-condition:

 [v’ = obj.getValue]

is really equivalent to:

 temp := obj.setValue(v) [v’ = temp’]

we must not expect that v will be equal to the result of obj.getValue from the moment

the message establishing the post-condition has finished until another updater changes

v. Another thread might change the state of obj immediately after the getValue

observer has been called.

18Bracketed terms in post-conditions are logically ‘and’ed together.

 7.4 State views of the implementation model 179

Since updaters can return results, we need a way of representing the value to be

returned in a post-condition. We represent the returned value using the message name

with a prime character appended:

 msg / [msg’ = 6]

Using the message name without a prime character has no meaning.

7.4.7 ‘Allow’

Often we want to show that messages are valid but don’t cause a change in state. One

way of doing this is to use self-transitions but a better way is to use the ‘allow’ feature

discussed in earlier chapters. Individual states or entire statecharts may include ‘allow’

lists in their textual parts to show that the messages listed are always valid in the state

where they appear and any nested states. For an ‘allow’ list in the outermost textual

part this means the whole statechart. A message may appear on transitions and in an

‘allow’ list; where a message is ‘allowed’ but would also cause a transition the

transition is taken. An updater that appears neither in the body of the statechart, nor on

an ‘allow’ list, can never be valid, so we must show updaters that can occur in any state

in the outermost ‘allow’ list.

Even if an ‘allowed’ message doesn’t cause a transition, any message-sends and

post-conditions shown in the updaters list in the textual part do apply. The message is

not being ignored, it just isn’t causing a transition.

An ‘allow’ cannot override pre-conditions. If the pre-conditions do not hold, the

object’s behaviour is undefined, even if the message is ‘allowed’.

Statecharts for the Sector and Exchange types appear in figure 7.19.

Sector-I

Updaters:
priceAdjust(c : Number) /

exchange.priceAdjust
[movement’ = movement + c]

priceChange(p : Number, d : Date, t : Time) /
[] exchange.priceChange(p, d, t),
minder.priceCheck

Allow:
priceAdjust
priceChange

Exchange-I

Updaters:
priceAdjust(c : Number) /

[movement’ = movement + c]
priceChange(p : Number, d : Date, t : Time) /

[] minder.priceCheck
Allow:

priceAdjust
priceChange
suspend

Figure 7.19 Allowing updaters

These statecharts have no body parts, so we must show the priceAdjust, priceChange

and suspend updaters in the ‘allow’ lists. If we did not, they could never happen.

Observers are, by default, assumed to be valid in all states. If an observer is valid in

only some states it must be included in an ‘allow’ list for those states; by showing an

180 Describing the implementation

observer in an ‘allow’ list anywhere on the statechart we change its default to be

invalid. Restricting the validity of observers is useful when certain properties can be

observed only in certain states. In figure 7.20 we have modified the statechart for

shares to show that a share’s price can only be observed in the Priced state.

Share-I

Creation:
() : () / [movement’ = 0]

Updaters:
priceChange(p : Number) /

[price’ = p]
[shareChange’ = shareChange � [new ShareChange(p)]]

Unpriced

Priced

priceChange

Allow:
price

priceChange(p, d, t) / sector.priceAdjust(price’ - price)
[movement’ = movement + p - price]
sector.priceChange(p, d, t), minder.priceCheck

Figure 7.20 Restricting the availability of observers

7.4.8 Entry and exit actions

Any state in an implementation model statechart can contain entry and exit actions.

These appear in the textual part of the state under the heading Entry: or Exit: and

consist of one or more message-sends. The use of entry and exit actions is a shorthand.

Defining an entry action is equivalent to sending the messages at the end of the relaxed

section of each incoming transition. Defining an exit action is equivalent to sending

the messages at the start of the relaxed section of each outgoing transition.

This seems reasonable enough for entry actions but the consequences for exit

actions needs to be considered carefully. Exit actions are not performed until the

object is in the next state. This seemingly bizarre interpretation makes perfect sense

when you consider it logically: exit actions mustn’t be performed until you are sure a

transition will be taken; by that time the object will be executing in a secured section

and you don’t want them to be performed in that condition. Therefore, they must wait

until the next relaxed opportunity, which is on entry to the new state. This

interpretation is also in line with that taken in the specification model.

We can show the use of an entry action on the statechart for the share price minder

used in the earlier examples, shown in figure 7.21.

Whenever the minder enters the Triggered state it sends a message to the alarm store

to post an alarm. Notice in particular what happens if a priceCheck message is

received in the Triggered state and minded.movement is greater than limit. The

message is valid, because of the entry in the ‘allow’ list, but it does not cause a

 7.4 State views of the implementation model 181

transition and would not cause either an exit or entry action to be performed. Entry

and exit actions are really attached to transitions, not states. Notice also how the

creation mechanism has been shown.

Armed

Creation:
(l : Number , d : String, m : Mindable) / m.addMinder(self) [minded’ = m] [limit’ = l] [desc’ = d]

Allow:
priceCheck

Active

Minder-I

priceCheck [abs minded.movement > limit]

priceCheck [abs minded.movement <= limit]

cancel

Triggered

Entry:
alarmStore.

minderAlarm(self)

Figure 7.21 Entry actions

7.4.9 Combining the textual and body parts

As we have already shown, it is possible to attach post-conditions and other

information (but not guards) to messages shown in the Updaters: list in the textual part

of the statechart at the outermost level. Such lists can only appear at the outermost

level. We need to consider the way in which information shown in these lists is

combined with other information shown on the transitions themselves. Figure 7.22

shows a stylised statechart with all the possible features that can be combined, together

with exit and entry actions.

State1 State1

Type-I

Exit:
exitMsg

rcvdMsg / transSecuredMsg
[transPost] transRelaxedMsg

Entry:
entryMsg

Updaters:
rcvdMsg / listSecuredMsg [listPost] listRelaxedMsg

Figure 7.22 Separate body and textual parts

182 Describing the implementation

The principle of combination is that elements in the list entry take precedence over

elements on the transition. The combined equivalent is shown in figure 7.23.

State1 State1

Type-I

rcvdMsg / listSecuredMsg, transSecuredMsg
[listPost] [transPost]
exitMsg, listRelaxedMsg,
transRelaxedMsg, entryMsg

Figure 7.23 Equivalent combined body

Although the post-condition from the list has been shown before the post-condition

from the transition, this is not meaningful; the post-condition clauses are just ‘and’ed

together, as usual, and no order of satisfaction is implied.

7.4.10 Finalisation

Implementation model statecharts can have finalisation states. As before, we define an

object as having no associations with other objects on entry to its finalisation state but

in the implementation model we must ensure this rather than just require it. If other

objects are holding the identity of the object being finalised, and are not themselves

going to drop its identity, the object being finalised must send the messages necessary

to force associations to be broken as part of the secured section of the finalisation

transition. These transitions cannot have any relaxed actions.

An object is eligible for destruction when it has no associations with other objects.

The exact moment when an object is destroyed will depend on the implementation

environment.

7.4.11 Transition decomposition

Note: this section is rather specialised and may be omitted on a first reading.

Earlier we drew a mechanism that showed a Minder sending a minderAlarm message to

an AlarmStore object. As you can see from figure 7.24, an alarm store holds a queue of

minders with pending alarms. The minderAlarm message adds a minder to the queue

and the nextAlarm message removes one. There is also a clear updater which empties

the queue. Note also that minders have been given a priority property.

 7.4 State views of the implementation model 183

AlarmStore-I

Observers:
size : Integer

Updaters:
minderAlarm(Minder)
nextAlarm : Minder
clear

Invariants:
const size
size > 1

Creation:
(Integer, set of Minder)

Minder-I

queue

[seq]

[subset of]

managed

[0..size]

Observers:
priority : Integer

Figure 7.24 Alarm store

The statechart for AlarmStore, given in figure 7.25, shows how the queue is

manipulated.

AlarmStore-I

Empty OK Full

Creation:
(n : Number, m : set of Minder) / [size’ = n] [managed’ = m]

Updaters:
minderAlarm(m : Minder) [m ∈ managed] / [queue’ = queue � [m]]
nextAlarm : Minder / [nextAlarm’ = head queue] [queue’ = tail queue]

minderAlarm

minderAlarm [#queue < (size - 1)]

minderAlarm [#queue = (size - 1)]

nextAlarm [#queue > 1]

nextAlarm [#queue = 1] nextAlarm

clear / [queue’ = []]

Figure 7.25 AlarmStore statechart

Imagine we had an object with an updater called process that took an AlarmStore as

a parameter. This object wishes to move to one of two states depending on the priority

of the minder at the head of the alarm store queue. We might try to describe the

behaviour of this object with the statechart fragment shown in figure 7.26.

This statechart fragment is incorrect, because we do not allow updaters, such as

nextAlarm, to be sent in guard expressions. This is because, conceptually, if not

actually, all guard expressions for a message are evaluated when the message arrives.

Thus, in figure 7.26, nextAlarm would be sent twice.

184 Describing the implementation

Waiting
for

Minder

Low
Priority

High
Priority

process(alarmStore) [alarmStore.nextAlarm.priority > 5]

process(alarmStore) [alarmStore.nextAlarm.priority <= 5]

Figure 7.26 Attempting to send updaters in guards

Instead, we allow a transition to be decomposed, and to end conditionally at

different states. We can replace the two transitions of figure 7.26 with one

decomposed transition, as in figure 7.27.

Although there are three arrows, figure 7.27 really contains just one transition, with

varying end states. The state Testing is not a stable state; it represents an intermediate

point in the transition decomposition. When a transition is decomposed, the first arrow

will carry the name of the message; subsequent arrows will have no message name but

they may have guards, as in figure 7.27. The transition ends when a stable state is

reached, such as HighPriority or LowPriority. An unstable state, such as Testing, can

have only unnamed arrows leaving it; stable states can never have unnamed arrows

leaving them. Names introduced into a decomposed transition, such as the formal

parameter name alarmStore and the transition variable theMinder, are in scope

throughout the transition.

Testing

process(alarmStore) /
theMinder : Minder;
theMinder := alarmStore.nextAlarm

Waiting
for

Minder

Low
Priority

High
Priority[theMinder.priority > 5]

[theMinder.priority <= 5]

Figure 7.27 Transition decomposition

Transition decomposition is essential when, as in this example, we want to select a

destination state according to the result of an updater message sent to another object.

We need to consider how, in a complex decomposition, messages sent and post-

conditions specified in each part combine to form the behaviour of the entire transition.

Consider the transition at the top of figure 7.28. In the transition from A to B, the

 7.4 State views of the implementation model 185

secured messages sec1, sec2 and sec3 are sent, the post-condition p is established and

the relaxed messages rel1, rel2 and rel3 are sent.

Now consider the decomposed version of the transition shown in the bottom part of

the diagram. We assume that the secured messages are sent at the point where they

appear. In a situation like this, where no transition variables are declared, the post-

conditions must all hold at the end of the whole transition, so

 p1 ∧∧∧∧ p2 ∧∧∧∧ p3 = p

In the usual way, relaxed messages are sent on entry to the new stable state, that is, B,

irrespective of where they appear in the decomposition. However, they are sent in the

order described by the decomposition.

Another use for decomposed transitions is when we wish to show repeated

behaviour in a loop. In figure 7.29 we show the design of a new updater for alarm

stores, called clearTo, that takes a minder as a parameter and empties the queue until

the specified minder is at the head of the queue.

A B
msg / sec1, sec2, sec3 [p] rel1, rel2, rel3

A

B

msg / sec1 [p1] rel1

Int2

Int1
/ sec2 [p2] rel2

/ sec3 [p3] rel3

msg2

msg2

Figure 7.28 Post-conditions in decomposed transitions

We saw a similar example to this in chapter 6, where internal events were used to

position the magazine of a slide projector. The natural implementation model form of

this would be to send messages to self; using transition decomposition is an alternative.

Figure 7.29 illustrates a very important point: assignments to transition variables, or,

as here, post-conditions that imply changes to transition variables, apply to the arrow

on which they appear. So the post-condition on the looping arrow:

[tmpQ’ = tail tmpQ]

186 Describing the implementation

AlarmStore-I

Empty OK Full

Creation:
(n : Number, m : set of Minder) / [size’ = n] [managed’ = m]

Updaters:
minderAlarm(m : Minder) [m ∈ managed]/ [queue’ = queue � [m]]
nextAlarm : Minder / [nextAlarm’ = first queue] [queue’ = tail queue]
clearTo(m : Minder) [m ∈ managed]

minderAlarm

minderAlarm [#queue < (size - 1)]

minderAlarm [#queue = (size - 1)]

nextAlarm [#queue > 1]

nextAlarm [#queue = 1]

nextAlarmSearching

clearTo(m) /
tmpQ : seq of Minder
[tmpQ’ = queue]

[#tmpQ = 0] /
[queue’ = []]

[(#tmpQ > 0) ∧ (m = first tmpQ)] /
[queue’ = tmpQ]

[(#tmpQ > 0) ∧ (m ≠ first tmpQ)] /
[tmpQ’ = tail tmpQ]

Figure 7.29 Looping using a decomposed transition

means ‘the value of tmpQ at the end of this arrow is equal to the tail of the value of

tmpQ at the beginning of this arrow’. By contrast, post-conditions that mention the

values of observers, associations or statechart variables must hold over the entire

transition. We could not have written, as an alternative:

[queue’ = tail queue]

because queue’ is describing the state of queue at the end of the whole transition.

7.5 Exceptions

Note: this section is rather specialised and may be omitted on a first reading.

Nearly every worthwhile programming language supports exception generation and

handling. Exceptions break the normal call and return behaviour of message-sending

by suspending the flow of control and passing control to a nominated point.

Unfortunately, every programming language has its own way of treating exceptions.

Rather than follow any particular language, we use a simple abstract model of

exceptions that can be mapped into any language which supports them, or, if the

chosen language does not support them, into an equivalent error handling structure.

In our abstract model of exceptions, each possible exception is identified by a

unique textual symbol. Exceptions are raised explicitly by placing the exception name

after the slash on a transition on the statechart. We assume that some exceptions, such

 7.5 Exceptions 187

as divide-by-zero, are raised implicitly by the run-time system. Exceptions are handled

by adding transitions where the message name is replaced by the exception name.

7.5.1 The ‘wrongState’ exception

We have said that when an object receives a message and the pre-conditions fail to

hold or no transition can be taken (and the message is not ‘allowed’), the behaviour of

the object is undefined. However, we assume that these situations will be detected in

some way, at least whilst the software is executing in development mode, and will

cause an exception to be raised, nominally an exception named wrongState. But, since

this behaviour is not formally mandated – indeed, an object conforming to a sub-type

might do something different – it would be incorrect for a client to trap and handle

wrongState exceptions as a matter of routine.

7.5.2 The exception hierarchy

Exceptions have an implication hierarchy. We can define one exception to imply

another; for example:

 divideByZero ⇒⇒⇒⇒ numericError

 numericError ⇒⇒⇒⇒ any

This says that the occurrence of a divide-by-zero exception implies a numeric error,

and a numeric error implies the occurrence of a general exception that we have called

any. Having an implication hierarchy makes it simple to detect a group of related

exceptions without having to specify each of them. It is useful to require that all

exceptions ultimately imply a general exception, such as any, because then we can look

for the general exception if we want to detect any sort of exception. We can either

specify these implications when we introduce the exception, on a statechart where it is

raised or generated, or in a separate formalism.

Although we will not deal with it further here, it is useful for exceptions to be able

to pass parameters to the exception handler. The syntax for this is straightforward but

we need to consider how parameters match-up in the implication hierarchy.

7.5.3 Exception handling

We will deal with exception handling first. Consider the transition from Armed to

Triggered on the statechart for the Minder type shown in figure 7.30. Any number of

things could go wrong during this transition but let’s just pick two: the sending of the

movement observer to the minded object might fail, due to some unspecified fault, as

188 Describing the implementation

might the attempt to notify the alarm store by sending the minderAlarm message, due to

the alarm store being full.

In the diagram we are detecting the occurrence of any exception while in the Active

state, and terminating the minder. The entry action, part of the relaxed section,

executes in the Triggered state where we are detecting the alarmFull exception and

returning to the Armed state so that we can try again on the next price change. If any

other exception were to occur while executing the entry action we would detect it and

take the any transition. When there is a choice of exception transition to take, the most

specific exception is handled.

Unhandled exceptions are passed up to the sender of the message being processed at

the time of the exception, so that they may detect it if they wish, and so on. For

example, exceptions occurring during processing of the cancel message are unhandled

by minders; they will be passed to the sender of the cancel message. Exceptions

ultimately unhandled must cause a system failure of some sort, but we do not try to

define the consequences.

Armed

Creation:
(l : Number , d : String, m : Mindable) / m.addMinder(self) [minded’ = m] [limit’ = l] [desc’ = d]

Allow:
priceCheck

Exceptions:
alarmFull, any

Active

Minder-I

priceCheck [
abs minded.movement > limit]

priceCheck [abs minded.movement <= limit]

cancel

Triggered

Entry:
alarmStore.

minderAlarm(self)

anyalarmFull

Figure 7.30 Exception handling

Complex transitions can be decomposed to allow specific exception handling at

various stages. Consider figure 7.31, which shows a fragment from the Share

statechart. The upper part of the diagram shows the transition as it appears earlier in

the chapter. The lower part decomposes the transition to allow specific exceptions to

be handled at specific points. For example, exception ex1 is handled during the

sending of the priceAdjust message. We have introduced a new stable state, Int3, to

allow specific handling of ex3 exceptions during the relaxed section, when the

 7.5 Exceptions 189

priceCheck and priceChange messages are sent. A new updater, endPriceChange, is

introduced to allow escape from Int3.

Priced

priceChange(p, d, t) / sector.priceAdjust(price’ - price)
[movement’ = movement + p - price] sector.priceChange(p, d, t),
minder.priceCheck

Priced

endPriceChange

Int1 priceChange(p, d, t)Int2 / sector.priceAdjust(price’ - price)

Int3

/ [movement’ = movement + p - price]
sector.priceChange(p, d, t),
minder.priceCheck,
endPriceChange

ex1ex2

ex3

Figure 7.31 Exception handling in decomposed transitions

Exception handling transitions, such as those just discussed, may be guarded. If the

exception occurs and the guard fails, the exception is passed up the sender stack just as

if the transition were not there. These transitions can also have actions and post-

conditions. In particular, they can include a post-condition defining the resulting value

of an updater.

7.5.4 Raising exceptions

The statechart for AlarmStore shown in figure 7.32 has been extended to show how

exceptions are raised. It raises the exception alarmFull when it tries to process a

minderAlarm message when the queue is full. Exception raising transitions can be

guarded but must have only the exception name after the slash. They behave similarly

to normal transitions except for the following:

• They must be self-transitions and must not cause a change of state.

• None of the post-conditions, secured actions, relaxed actions, entry actions or

exit actions normally associated with the message that caused the exception

apply and are not performed.

If an alarm store tries to process a nextAlarm message when the queue is empty it will

raise a wrongState exception. We could have designed it to raise a more specific

exception but this brings up the question of what exceptions are for. We believe

190 Describing the implementation

exceptions should be used only for truly exceptional conditions, not to resolve routine

design errors. It seems reasonable to use a specific exception to indicate that the alarm

queue is full if, in normal operation, the queue is not intended to become full but if we

must take some sensible action in the unlikely event that it does. On the other hand,

we should not use a specific exception to indicate that the alarm queue is empty

because we don’t want clients to use exception generation as a way of simulating a

‘queue empty’ result from nextAlarm. If, as a matter of course, we expect clients to

want to be able to send nextAlarm when the queue is empty, we should design the

message interface to return a result code or nil. We have sometimes seen exceptions

used to indicate ‘end of file’ during file reading operations; this is sloppy programming

and resembles the discredited use of the goto statement.

AlarmStore-I

Empty OK Full

Updaters:
minderAlarm(m : Minder) [m ∈ managed] / [queue’ = queue � [m]]
nextAlarm : Minder / [nextAlarm’ = first queue] [queue’ = tail queue]

Exceptions:
alarmFull ⇒ any

minderAlarm

minderAlarm [#queue < (size - 1)]

minderAlarm [#queue = (size - 1)]

nextAlarm [#queue > 1]

nextAlarm [#queue = 1] nextAlarm

minderAlarm / alarmFullclear / [queue’ = []]

Figure 7.32 Raising exceptions

7.5.5 Exceptions and conformance

When building a sub-type of a type that raises exceptions, the following general

principles must apply:

1. A message that does not cause an exception when sent to an object conforming

only to the super-type must not be designed to cause an exception when sent to

an object conforming to the sub-type19.

2. A message that does cause an exception when sent to an object conforming only

to the super-type need not cause an exception when sent to an object conforming

19Of course, an exception might still occur, due to some unexpected failure.

 7.6 Summary 191

to the sub-type, and, if it does, the details of the exception, such as its name, may

be different.

Remember that an message processed in the wrong state causes an implicit wrongState

exception. So, according to principle (2) above, it is valid for a sub-type to show

explicit handling of a message which was not handled (that is, was invalid) in the

super-type. This is necessary if we are to be able to produce conformant sub-types that

extend the capabilities of the super-type in meaningful ways. But it severely limits the

usefulness of exceptions to indicate ‘routine’ errors because the client cannot assume

that an exception will be raised by sub-types. For example, we might create a sub-type

of AlarmStore which ignores minderAlarm messages when the queue is full, rather than

raising an exception. Given our views on the correct use of exceptions, we do not

consider this a serious problem.

7.6 Summary

• The implementation model provides a description of the chosen implementation

design, and takes into account the limitations imposed by the physical execution

environment.

• In the implementation model, objects communicate by sending point-to-point

messages, following the model used in object-oriented programming languages.

• Stimuli received from the software’s environment trigger message-sending

sequences, which may, in turn, generate responses that manifest as events in the

environment.

• The most important technique used in the construction of implementation models

is the construction of mechanisms, which show object interaction message

sequences in particular scenarios. Mechanisms are examples, and so cannot be a

complete description of system behaviour.

• Messages invoke operations, and the organisation of operations can be structured

to follow a regular pattern. This pattern is related to the organisation of

statechart transitions in the specification model.

• Mechanisms can be broken into segments to avoid repetition of common parts.

• We divide the operations of an object into observers and updaters. Observers do

not change the state of the object (or any part of the system); updaters may

change the state of the object.

• Each updater has two parts: the secured section comes first and contains that

code which establishes the new state of the object and ensures that the system is

in a consistent state; the relaxed section comes last and contains code which

forwards the stimulus to other objects and invokes consequential processing.

• Associations cannot be observed by clients unless specific observer operations

are provided.

• The principle of structural conformance applies to the implementation model in

the same way as in the specification model.

192 Describing the implementation

• Type invariants in the implementation model show intent; because processing is

not instantaneous they will not hold at all times.

• Associations can be annotated by arrowheads to show required visibilities.

• Transitions on statecharts in the implementation model are triggered by the

arrival of updater messages. If no transition can be taken or the defined pre-

conditions do not hold, the behaviour of the object is undefined.

• The syntax of transitions is arranged so that processing in the secured and relaxed

sections can be shown separately.

• Statecharts may be extended to show the generation and handling of exceptions.

The receipt of an invalid message is assumed to cause a wrongState exception.

7.7 Bibliographic notes

The inspiration for our work on mechanisms, and the name itself, comes from the work

of Grady Booch [Booch91].

The numbering scheme for messages in mechanisms is adopted from Fusion

[Colem94]. With Booch's original, simpler, numbering scheme it is impossible in

general to determine how far one invocation returns before the next starts.

For information on exceptions in programming languages see [Barne84], [Meyer88]

and [Strou91].

7.8 References

[Barne84] J.Barnes. Programming in Ada, Addison-Wesley, London, 1984.

[Booch91] G. Booch. Object Oriented Design With Applications, Benjamin/Cummings, Redwood City,

California, 1991.

[Colem94] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes and P. Jeremaes.

Object-oriented Development: The Fusion method, Prentice-Hall, Englewood Cliffs, New Jersey,

1994.

[Meyer88] B. Meyer. Object-oriented Software Construction, Prentice-Hall, Hemel Hempstead,

Hertfordshire, 1988.

[Strou91] B. Stroustrup. The C++ Programming Language, 2nd edition, Addison-Wesley, Reading,

Massachusetss, 1991.

 193

CHAPTER 8

Sub-types, inheritance and
conformance

8.1 Sub-typing and inheritance: what is ‘is’?

Claiming that something is something else is a risky business. Some time ago, one of

the authors claimed in public that ‘there is no doubt that an employee is a person.’

After the presentation, one of the audience came up and said ‘You know you said that

employees can always do what people can do? Well, what about being unemployed?’ It

was difficult to find a good answer. Clearly, if we say that an employee is a person, we

aren’t saying that an employee can do or be everything a person can do or be. So what

are we saying?

As software practitioners, we are not really interested in the fundamentals of

linguistics or metaphysics, fascinating though they may be. Instead, we want a

practical and precise interpretation of what it means when we say that one type is a

sub-type of another – the relationship often interpreted as ‘is-a’. Without such a

precise interpretation, we are always at the mercy of disputes about whether a such-

and-such is really a so-and-so, and our analysis and design sessions are in danger of

being bogged down in unresolvable argument.

A diagram which shows one type as a sub-type of another, such as figure 8.1, is

making a particular kind of formal statement, depending upon the interpretation –

essential, specification or implementation – in use at the time. Ideally, we want to

preserve the structure of our type diagram between all three interpretations, because

then we can claim to have a seamless development. Hence when we have an ‘is-a’

relationship in the essential model, we would like the same relationship to apply in the

other models as well.

The vital point about an ‘is-a’ relationship is that it always occurs with respect to a

given set of expectations. Whenever I say ‘an Employee is a Person’, what I really

mean is ‘with respect to the following set of expectations about Persons: … anything

that is an Employee is a Person.’ With this stipulation, we avoid the ‘being

unemployed’ problem simply by leaving the ability to be unemployed out of our set of

expectations. In normal conversation, we rarely expect such precision; but when

building software, we must insist on it.

194 Sub-types, inheritance and conformance

So sub-typing is a relationship of substitutability with respect to a given set of

expectations. The expectations are different depending on the modelling perspective

adopted. In the implementation and specification models, we are specifically

interested in substitutability of software components during software construction and

execution, and we need to define as accurately as we can what the expectations are for

this substitutability, and how the substitutability principle corresponds from one model

to the other. In the essential model, we are not building software, so some thought is

needed about exactly what we want sub-typing to mean; we certainly want to preserve

our concept of seamlessness, that is, preserving the structural correspondences between

types where possible.

Figure 8.1 A sub-type

As we discussed briefly in chapter 1, we often call the set of expectations that a

client has of a supplier its contract. A contract is a crucial aspect of the design of an

object-oriented software system because contracts establish the ‘plugs and sockets’

which make software component reuse possible. We call the activity of establishing

these re-usable interfaces design by contract.

Inheritance is not the same as sub-typing. Inheritance is a mechanism adopted by

programming notations for sharing descriptions between types. If one type inherits

from another, the inheriting type uses, modifies and extends the description of the

inherited type. There is no guarantee that inheritance in a particular language or

notation will produce a sub-type. In the Smalltalk language, for example, inheritance

can be used freely to define classes as arbitrary modifications of other classes, which

will not in general be type-conformant except as a result of the programmer’s

discipline. In C++ and Eiffel, the rules for inheritance are defined to give a certain

level of type-conformance, although in each language there are loopholes which allow

the creation of classes which inherit from, but do not strictly conform to, their parent

classes. The same is true of our modelling notations, although we believe the

loopholes are fairly small.

It is important to realise that type-conformance is a theoretical ideal. There are no

practically useful programming languages in which the concept of sub-type is defined

and enforced with complete accuracy and rigour. In this book, too, our logic simply

isn’t strong enough to ensure complete substitutability under all conceivable

 8.2 Specification model sub-typing 195

circumstances. The best we can (and do) claim is that our techniques provide a lot

more ability to reason about the structure and behaviour of a software system than is

provided by programming languages alone, or coupled with informal documentation.

There are three main concepts which must be taken into account when considering

the relationships between super-types and sub-types, as follows:

• Structural conformance: the structure of the sub-type conforms to the structure of

the super-type, as defined by the type view. Structural conformance expresses

those aspects of the contract between a supplier and its clients which describe the

clients’ ability to access the supplier’s properties and navigate its associations.

The principles of structural conformance apply to implementation, specification

and essential models in almost exactly the same way, and have already been

described in detail in chapters 2, 3 and 7.

• Behavioural conformance: the behaviour of the sub-type conforms to the

behaviour of the super-type, as defined by the type’s statechart. Behavioural

conformance expresses those aspects of the contract between a supplier and its

clients which describe the clients’ ability to cause the supplier to change state.

• Inheritance: the description of the sub-type inherits some or all of the description

of the super-type, possibly with additions or modifications.

In this chapter we focus on behavioural type-conformance, and in particular how the

statecharts of super-types and sub-types are related in each modelling perspective. We

start with specification models, because these establish the principles for behavioural

type-conformance in both specification and implementation models. Essential models,

being unconcerned with software, have different rules for behavioural type-

conformance, which we discuss later.

8.2 Specification model sub-typing

In the specification model, sub-typing describes substitutability of one type of object

for another as an event detector. Client–supplier relationships are not explicitly

expressed, because events are broadcast; nevertheless there are implicit client–supplier

relationships between the generators and detectors of events.

So we require that sub-types conform to super-types in the way that they respond to

events. More precisely, if an instance of a super-type responds to a particular sequence

of events, ending up in a particular state, we would like an instance of any of its sub-

types to respond to the same sequence of events and end up in the same state. Note that

specification model sub-typing does not mean complete substitutability in a system,

only substitutability as an event receiver.

We do not require sub-types to fail to respond to event sequences that super-types

fail to respond to – in fact, sub-types often define additional behaviour which super-

types leave undefined. Neither do we require that events generated by sub-types

correspond in any way to those generated by super-types. If we also required these

196 Sub-types, inheritance and conformance

aspects of a type to correspond, we would be left with so little room for manoeuvre that

the concept of sub-type would be practically useless.

As a consequence of the above, and as we saw in chapter 6, the interpretation of

pre-conditions in the specification model is subtly different from that in the essential

model. In the latter, the failure of a pre-condition implies that the event cannot happen

under these circumstances. In the specification model, the failure of a pre-condition

implies that the software’s response to the event is undefined. There may in fact be a

defined response in the ultimate implementation, typically ignoring the event

altogether, or generating an error message; the specification model just says nothing

about this.

 There is a similar difference of interpretation concerning the meaning of absent

transitions on statecharts. In the specification model, the absence of a transition means

that if the event happens, the behaviour of the software is undefined. This

interpretation allows a sub-type to extend the behaviour of a super-type so that the

response to an undefined event becomes defined in the sub-type.

A proper discipline for type-conformance is essential to achieve reuse. Within

certain limits, discussed later in this chapter, type-conformance means that an object

can be guaranteed to satisfy a certain set of expectations without having to belong to a

single specific type. As a result we can construct type hierarchies of abstract

definitions intended for use in a variety of concrete configurations.

To illustrate the main ideas we use a detailed example from the field of interactive

user interfaces, which we build up step-by-step using type-conformance as the ‘glue’ to

fit the steps together. Imagine that the software being specified is a graphical editor for

manipulating geometric shapes on a display screen using a pointing device (e.g. a

mouse) with a single button. The first step is shown in figure 8.2, which defines two

types called Interactor and SelectableShape. In this example we assume that the co-

ordinate system and basic geometric shapes are pre-defined using the value types Point,

Line and Rectangle whose specifications can be found in figure 8.4; in several of the

diagrams we avoid clutter by not duplicating the details of these value types.

[seq]

Interactor-S SelectableShape-S
selection

[member of] allShapes
selectsAt(Point) : Boolean
keepsSelectionAt(Point) : Boolean
Invariants:

abstract
∀p:Point •

selectsAt(p) ⇒ keepsSelectionAt(p)

Figure 8.2 Interactor and SelectableShape

Interactor is an abstraction for the control of the complete display area in which the

shapes are to be manipulated. SelectableShape is an abstraction for all selectable

shapes. The sequenced association with the role name allShapes establishes all of the

shapes being manipulated in this area. The sequence of the shapes determines the

 8.2 Specification model sub-typing 197

front-to-back ordering. At most one shape is selected at any time. SelectableShape

defines two parameterised properties called selectsAt and keepsSelectionAt. The

selectsAt property determines whether a shape can be selected at any point. When no

shape is selected, by pressing the mouse button at a point, the frontmost shape for

which selectsAt is true will become selected. The keepsSelectionAt property

determines whether selection will be retained, that is, if a shape has already been

selected then if the button is pressed anywhere where keepsSelectionAt is true, the

same shape will remain selected.

The idea is that selectsAt describes the area of the shape itself, and keepsSelectionAt

describes the area of the shape plus the additional control handles that it sprouts when

it is selected. For example, if selectsAt describes a rectangle, as shown on the left in

figure 8.3, then keepsSelectionAt could describe the rectangle plus control handles at

its corners, as shown on the right.

keepsSelectionAtselectsAt

Figure 8.3 The relationship between selectsAt and keepsSelectionAt

The invariant within SelectableShape specifies that any point which causes selectAt

to be true also causes keepsSelectionAt to be true, that is, the area described by selectAt

is contained within the area described by keepsSelectionAt. At this stage, because the

properties have not been specified any further, nothing has been said about the actual

shape; below we work through the example in detail for the cases of a line and a

rectangle.

Figure 8.5 is the statechart for Interactor. It has two orthogonal parts. The right-

hand part listens for mouseDown events, and if there are any shapes the select event is

generated with the complete sequence of shapes as a parameter. The left-hand part

responds to the resulting confirmSelect event and generates events up, down and move

when a shape is selected. Note that the Interactor oscillates between NoSelection and

Selection even when the selection doesn’t change.

Figure 8.6 is the statechart for SelectableShape, and shows how selection and de-

selection are controlled. The select event is detected by the shape at the head of the

sequence. If this is already selected, and keepsSelectionAt is true at the selection point,

the shape will stay in the selected state and generate the confirmSelect event (which is

detected by the Interactor). If the front shape is not selected, and selectAt is true at the

selection point, the shape will become selected, and generate the confirmSelect event

as well as the deselect event for all the remaining shapes. The reader is invited to

study all the transitions in the diagram in order to understand how it works in detail.

One point to note is that the events down, up and move are all allowed to happen at any

198 Sub-types, inheritance and conformance

time in the Selected state. This ability must be retained in any sub-types of

SelectableShape to ensure conformance.

Point.x : Number
Point.y : Number
Point=Point : Boolean
Point+Point : Point
Point-Point : Point
Point/Number : Point
Point*Number : Point
Number*Point : Point
Point.isAbove(Point) : Boolean
Point.isBelow(Point) : Boolean
Point.isRightOf(Point) : Boolean
Point.isLeftOf(Point) : Boolean
Invariant:

value
(p=q) ⇔ (p.x=q.x) ∧ (p.y=q.y)
(p+q).x = p.x+q.x
(p+q).y = p.y+q.y
(p-q).x = p.x-q.x
(p-q).y = p.y-q.y
(p*s).x = s*(p.x)
(p*s).y = s*(p.y)
(s*p).x = s*(p.x)
(s*p).y = s*(p.y)
(p/s).x = (p.x)/s
(p/s).y = (p.y)/s
p.isAbove(q) ⇔ p.y > q.y
p.isRightOf(q) ⇔ p.x > q.x
p.isBelow(q) ⇔ p.y < q.y
p.isLeftOf(q) ⇔ p.x < q.x

Rectangle

Point

topLeft

topRight

bottomLeft

bottomRight

Rectangle.contains(Point) : Boolean
Invariant:

value
r.topLeft.x = r.bottomLeft.x
r.topRight.x = r.bottomRight.x
r.topLeft.y = r.topRight.y
r.bottomLeft.y = r.bottomRight.y
r.diagonal = r.topRight - r.bottomLeft
r.centre = r.bottomLeft +r.diagonal/2
r.contains(p) ⇔

p.isAbove(r.bottomLeft)
∧ p.isRightOf(r.bottomLeft)
∧ not p.isAbove(r.topRight)
∧ not p.isRightOf(r.topRight)

centre

diagonal

Line
Line.contains(Point) : Boolean
Invariant:

value
l.boundingBox.bottomLeft.x = l.start.x.min(l.end.x)
l.boundingBox.bottomLeft.y = l.start.y.min(l.end.y)
l.boundingBox.topRight.x = l.start.x.max(l.end.x)
l.boundingBox.topRight.y = l.start.y.max(l.end.y)
l.contains(p) ⇔

(((p.y-l.start.y)/(p.x-l.start.x) =
(l.end.y-l.start.y)/(l.end.x-l.start.x)) ∧

l.boundingBox.contains(p))

start

end

boundingBox

Figure 8.4 Value types for geometrical shapes

Interactor-S

Events:
mouseDown(i: Interactor, p: Point) / [selection’ = nil]
mouseUp(i: Interactor, p:Point)
mouseMove(i: Interactor, old: Point, new: Point)
confirmSelect(sh: SelectableShape, p: Point [sh ∈ allShapes]) / [selection’ = sh]

Allow:
mouseDown
mouseUp
mouseMove

Creation:
()

NoSelection

Selection

confirmSelect(p) /
down(selection, p)

mouseUp(p) /
up(selection, p)

mouseMove(p,q) /
move(selection, p,q)

mouseDown

Listening

mouseDown(p) [#allShapes > 0] /
select(allShapes,p)

Generations:
select(seq of SelectableShape, Point)
up(SelectableShape, Point)
down(SelectableShape, Point)
move(SelectableShape, Point, Point)

Figure 8.5 Statechart for Interactor

 8.2 Specification model sub-typing 199

SelectableShape-S

Unselected

Selected

Events:
select(shapes : seq of SelectableShape, p: Point [self = head shapes])
deselect(shapes : seq of SelectableShape [self ∈ shapes])
down(sh: SelectableShape, p: Point)
up(sh: SelectableShape, p: Point)
move(sh: SelectableShape, old: Point, new: Point)

Generations:
select(seq of SelectableShape, Point)
deselect(seq of SelectableShape)
confirmSelect(SelectableShape, Point)

Creation:
()

select(shapes, p) [selectsAt(p)] /
confirmSelect(self, p), deselect(tail shapes)

select(shapes, p) [not selectsAt(p) ∧ (#shapes>1)] /
select(tail shapes, p)

select(shapes, p) [not selectsAt(p) ∧ (#shapes=1)]

Allow:
down
up
move

select(shapes, p) [keepsSelectionAt(p)] /
confirmSelect(self, p)

select(shapes, p) [not keepsSelectionAt(p) ∧ (#shapes=1)]

select(shapes, p) [not keepsSelectionAt(p) ∧ (#shapes>1)] /
select(tail shapes, p)

deselect

Figure 8.6 Statechart for SelectableShape

We can illustrate the co-operative working of these two statecharts using an event

scenario. To make the scenario more expressive, we allow specific objects to be

named for each generation and detection shown in the scenario: thus ?i.mouseDown(p)

means ‘object i detects the mouseDown event with parameter p’. The scenario

commences in the object configuration shown in figure 8.7, which shows three

SelectableShape objects associated with one Interactor. The mouseDown event

parameter p is a point such that the following conditions prevail:

s1.keepsSelectionAt(p) = false, s2.keepsSelectionAt(p) = false,

 and s3.selectsAt(p) = true.

At the beginning of the scenario, shape s2 is selected; at the end, s2 has been de-

selected and s3 selected. Indenting is used to clarify cause and effect: all the

generations resulting from detecting a given event are shown indented at the same level

as the detected event1.

1Note that all the consequences of an event at one level of indentation occur before the next event at that level (in
this case s3.selected and s3.deselect). As we pointed out earlier, the ordering of events is not always totally
defined. In cases where orderings are only partially defined, linear event scenarios such as this can only describe
relationships between the mutually ordered events.

200 Sub-types, inheritance and conformance

(Interactor)
[in Selection]

i

(SelectableShape)
[in Selected]

s2selection

(SelectableShape)
[in Unselected]

s3

(SelectableShape)
[in Unselected]

s1

allShapes(2)

allShapes(1)

allShapes(3)

Figure 8.7 One interactor and three shapes

In figure 8.8 we take the next step by creating an abstract sub-type of

SelectableShape, called MovableShape. Structurally, the only difference between this

and its parent is the addition of a property called origin, which represents a fixed point

which can be used to specify how the shape moves.

selectsAt(Point) : Boolean
keepsSelectionAt(Point) : Boolean
Invariants:

abstract
∀p:Point •

selectsAt(p) ⇒ keepsSelectionAt(p)

[seq]

Interactor-S SelectableShape-S
selection

[member of]

MovableShape-S

origin : Point
Invariants:

abstract

allShapes

Figure 8.8 Introducing MovableShape

MovableShape has the statechart shown in figure 8.9. Because this is a specification

model, the statechart of the super-type is inherited. So MovableShape inherits the

statechart of SelectableShape, and specifies just the differences, which occur in the

Selected state. The events up, down and move are still allowed at any time in this

state, because the allow is inherited. However, in the Down sub-state the move event

generates a moveShape event, which can be detected in the Down sub-state and which

will cause the shape to be moved, as indicated by the post-condition in the event list.

Detecting the moveShape event is not allowed in the Up sub-state.

?i.mouseDown(p)

!i.select([s1,s2,s3], p)

 ?s1.select([s1,s2,s3], p)

 !s1.select([s2,s3], p)

 ?s2.select([s2,s3], p)

 !s2.select([s3], p)

 ?s3.select([s3], p)

 !s3.confirmSelect(s3, p)

 ?i.confirmSelect(s3, p)

 !i.down(s3, p)

 ?s3.down(s3, p)

 !s3.deselect([], p)

 8.2 Specification model sub-typing 201

MovableShape-S

Selected

Up

Down

Events:
moveShape(sh: MovableShape, old: Point, new: Point) / [origin’ = origin + new - old]

Generations:
moveShape(MovableShape, Point, Point)

Creation:
() : ()

down

up

Allow:
moveShape

move(old, new) / moveShape(self,old,new)

Figure 8.9 Statechart for MovableShape

You might propose that the same effect could be achieved by putting the post-

condition on the moveShape event onto the transition for the move event in the Down

state, and forgetting about the moveShape event. This would indeed have the same

behaviour for the current example. However, it would prevent the behaviour in the

Down state from being specialised further, to have effects other than moving the shape

around. Once we have specified a post-condition for an event in a state, all sub-types

must establish the same post-condition for that event in that state: otherwise we cannot

ensure that all event sequences will be detected in a conformant way.

Also notice that the event list only contains entries for the new event introduced in

this type; the other entries are inherited from the super-type and need not be repeated.

Extending the behaviour of a statechart by introducing nested states into a state

defined in the super-type, as in this example, is one of the most common and useful

ways of specialising a type.

Figure 8.10 is a composite statechart showing the overall results of the inheritance

of MovableShape from SelectableShape. Notice the following:

• states Up and Down, shown inside the Selected state;

• the total event list built up from the separate event lists;

• the allow clause, inside the Selected state;

• the super-type statechart becoming a state inside the sub-type statechart;

Of course, one of the main motivations for inheritance is to avoid the necessity of

drawing, or even looking at, complex statecharts such as figure 8.10.

202 Sub-types, inheritance and conformance

MovableShape-S

SelectableShape

Unselected

Selected

Events:
select(shapes : seq of SelectableShape, p: Point [self = head shapes])
deselect(shapes : seq of SelectableShape [self ∈ shapes])
down(sh: SelectableShape, p: Point)
up(sh: SelectableShape, p: Point)
move(sh: SelectableShape, old: Point, new: Point)
moveShape(sh: MovableShape, old: Point, new: Point) / [origin’ = origin + new - old]

Generations:
select(seq of SelectableShape, Point)
deselect(seq of SelectableShape)
confirmSelect(SelectableShape, Point)
moveShape(MovableShape, Point, Point)

Creation:
()

select(shapes, p) [selectsAt(p)] /
confirmSelect(self, p),
deselect(tail shapes)

select(shapes, p) [not selectsAt(p) ∧ (#shapes>1)] /
select(tail shapes, p)

select(shapes, p) [not selectsAt(p) ∧ (#shapes=1)]

Allow:
down
up
move

select(shapes, p) [keepsSelectionAt(p)] /
confirmSelect(self, p)

select(shapes, p) [not keepsSelectionAt(p) ∧ (#shapes=1)]

select(shapes, p) [not keepsSelectionAt(p) ∧ (#shapes>1)] /
select(tail shapes, p)

deselect
Up

Down

down
up

Allow:
moveShape

move(old, new) /
moveShape(self,old,new)

Figure 8.10 The results of MovableShape inheriting SelectableShape

Our next refinement is shown in figure 8.11, which defines a further specialisation

to MovableShape, this time introducing ResizeableShape. A ResizeableShape has a set

of rectangular handles which can be grabbed and used to resize the shape. The

invariants on the type diagram specify that the handles are all of the same size and do

not overlap, that the grabsAt property is defined to be true when its parameter is within

one of the handles, and the keepsSelectionAt property is only true within the selectsAt

area or within the grab handles.

Figure 8.12 is the corresponding statechart. It shows how the Down state is

specialised by sub-states called Moving and Resizing. The down transition is split,

using guards, into transitions into the two sub-states. A move event in the Moving state

generates the moveShape event, whose effect is inherited from the super-type; a move

event in the Resizing state generates a resize event. This event is only allowed in the

Resizing state, but its effect is not specified because we still do not know what specific

shape we are dealing with. Note that we can specify the effects of moving a shape at a

considerably more general level of abstraction than we can specify the effects of

resizing one.

There is no need to show the up transition from the Down to the Up state, because

all transitions not explicitly added or overridden are inherited from the super-type.

 8.2 Specification model sub-typing 203

[seq]

Interactor-S SelectableShape-S
selection

[member of]

MovableShape-S

origin : Point
Invariants:

abstract

allShapes

ResizeableShape-S

Rectangle
handles

grabsAt(Point) : Boolean
handleDiagonal : Point
Invariants:

abstract
const handleDiagonal
∀h:handles • h.diagonal = handleDiagonal
∀p:Point • (grabsAt(p) ⇔

∃h: handles • h.contains(p))
∀p:Point •

(∃h1: handles • h1.contains(p)) ⇒
not (∃h2: handles • (h2 ≠ h1) ∧ h2.contains(p))

∀p:Point •

(keepsSelectionAt(p)) ⇔
selectsAt(p) ∨ grabsAt(p))

selectsAt(Point) : Boolean
keepsSelectionAt(Point) : Boolean
Invariants:

abstract
∀p:Point •

selectsAt(p) ⇒ keepsSelectionAt(p)

Figure 8.11 Introducing ResizeableShape

ResizeableShape-S

Selected

Up

Down

Events:
resize(sh: ResizeableShape, old: Point, new: Point)

Generations:
resize(ResizeableShape, Point, Point)

Creation:
() : ()

down(p) [not grabsAt(p)]

move(old, new) / moveShape(self, old, new)

Moving Resizing

down(p) [grabsAt(p)]

move(old, new) /
resize(self, old, new)

Allow:
resize

Figure 8.12 Statechart for ResizeableShape

Our final step in specialising this specification to describe the behaviour of a

particular shape is shown in figure 8.13, which introduces the concrete type

EditableLine as a further specialisation of ResizeableShape. The invariants in this type

specify the origin and selectAt properties in terms of properties of a Line value

associated with the EditableLine object. Note that the handles are carefully arranged so

that they cannot overlap, even with a line of zero length. Checking the consistency of

204 Sub-types, inheritance and conformance

the invariants of a type with those of its super-types is an important aspect of ensuring

type-conformance.

grabsAt(Point) : Boolean
handleDiagonal : Point
Invariants:

abstract
const handleDiagonal
∀h:handles • h.diagonal = handleDiagonal
∀p:Point • grabsAt(p) ⇔

∃h: handles • h.contains(p)
∀p:Point •

(∃h1: handles • h1.contains(p)) ⇒
not (∃h2: handles • (h2 ≠ h1) ∧ h2.contains(p))

∀p:Point •

keepsSelectionAt(p) ⇔
(selectsAt(p) ∨ grabsAt(p))

[seq]

Interactor-S SelectableShape-S
selection

[member of]

MovableShape-S
origin : Point
Invariants:

abstract

allShapes

ResizeableShape-S

Rectangle
handles

EditableLine-S

Invariants:
origin = l.start
∀p:Point •selectsAt(p) ⇔ l.contains(p)
l.start.isLeftOf(l.end) ∧ l.start.isBelow(l.end) ⇒

(startHandle.topRight = l.start)∧(endHandle.bottomLeft = l.end)
l.start.isLeftOf(l.end) ∧ not l.start.isBelow(l.end) ⇒

(startHandle.bottomRight = l.start)∧(endHandle.topLeft = l.end)
not l.start.isLeftOf(l.end) ∧ l.start.isBelow(l.end) ⇒

(startHandle.topLeft = l.start)∧(endHandle.bottomRight = l.end)
not l.start.isLeftOf(l.end) ∧ not l.start.isBelow(l.end) ⇒

(startHandle.bottomLeft = l.start)∧(endHandle.topRight = l.end)

[redefines]

[2]
startHandle endHandle

[member of]

[member of]

selectsAt(Point) : Boolean
keepsSelectionAt(Point) : Boolean
Invariants:

abstract
∀p:Point •

selectsAt(p) ⇒ keepsSelectionAt(p)

Line
l

Figure 8.13 Introducing EditableLine

The statechart for EditableLine in figure 8.14 shows using post-conditions how the

resize event causes the ends of the line to follow the mouse.

EditableLine-S

Resizing

resize(old, new) [h1.contains(old)] /
[l.start’ = l.start+new-old]

Creation:
(ln: Line) : () / [l’ = ln]

resize(old, new) [h2.contains(old)] /
[l.end’ = l.end+new-old]

Figure 8.14 Statechart for EditableLine

Figures 8.15 and 8.16 show a similar extension of ResizeableShape to specify an

EditableRectangle type.

 8.2 Specification model sub-typing 205

grabsAt(Point) : Boolean
handleDiagonal : Point
Invariants:

abstract
const handleDiagonal
∀h:handles • h.diagonal = handleDiagonal
∀p:Point • (grabsAt(p) ⇔

∃h: handles • h.contains(p))
∀p:Point •

(∃h1: handles • h1.contains(p)) ⇒
not (∃h2: handles • (h2 ≠ h1) ∧ h2.contains(p))

∀p:Point •

keepsSelectionAt(p))⇔
(selectsAt(p) ∨ grabsAt(p))

[seq]

Interactor-S SelectableShape-Sselection

[member of]

MovableShape-S

origin : Point
Invariants:

abstract

allShapes

ResizeableShape-S

Rectangle
handles

EditableRectangle-S
Invariant:

origin = rect.bottomLeft
∀p:Point •

selectsAt(p) ⇔ rect.contains(p)
blHandle.topRight = rect.bottomLeft
brHandle.topLeft = rect.bottomRight
tlHandle.bottomRight = rect.topLeft
trHandle.bottomLeft = rect.topRight

[redefines]

[4]

brHandle

[member of]

[member of]

[member of]

[member of]

tlhandle trHandle rect

selectsAt(Point) : Boolean
keepsSelectionAt(Point) : Boolean
Invariants:

abstract
∀p:Point •

selectsAt(p) ⇒ keepsSelectionAt(p)

blHandle

Figure 8.15 Introducing EditableRectangle

EditableRectangle-S

Resizing

resize(old, new) [h1.contains(old)] /
[rect.bottomLeft’ = rect.bottomLeft+new -old]

Creation:
(r: Rectangle) : () / [rect’ = r]

resize(old, new) [h2.contains(old)] /
[rect.bottomRight’ = rect.bottomRight+new -old]

resize(old, new) [h3.contains(old)] /
[rect.topLeft’ = rect.topLeft+new -old]

resize(old, new) [h4.contains(old)] /
[rect.topRight’ = rect.topRight+new -old]

Figure 8.16 Statechart for EditableRectangle

206 Sub-types, inheritance and conformance

8.2.1 Type-conformance rules

Having illustrated the main ideas through an extended example, we present the rules

for conformance in the specification model. First remember that all of the rules about

structural type extension introduced in chapters 2 and 3 apply to the specification

model as well. The rules particular to the specification model are those which define

how statecharts can be extended. These rules are designed to make sure (as far as is

possible) that a sub-type is behaviourally conformant to its super-types, that is, that

every event sequence accepted by an object of a super-type, leaving it in a particular

state, will be accepted by an object of the sub-type and leave it in the same state.

Another way of thinking about this is that all possible paths around the state space

defined by the super-type are preserved in the sub-type. The general principle is that

any number of new states and transitions may be added in a sub-type, but all states and

transitions in the super-types must be preserved or refined:

 1. Whenever a sub-type is defined, the statecharts from the super-types are

inherited. This means that, in the absence of any defined extensions, the

statechart for the sub-type is an orthogonal combination of statecharts, one for

each super-type, each containing a single state with the name of the super-type.

Each orthogonal section has a separate event list, which is the same as the

event list for the corresponding super-type, including allow entries, but excluding

creation entries. Creation on the sub-type invokes creation on all of its super-

types, as described in chapter 4; creation post-conditions related to a super-type

belong to the initial state arrow(s) entering the state representing the super-type

in question.

Figure 8.17 illustrates statechart inheritance for some symbolic types called A,

B and C. The statechart called Resulting C-S denotes the result of inheriting A

and B, without defining any extensions or refinements in C.2

 2. When we draw a statechart for a sub-type we do not reproduce all of the

statecharts for the super-types; we reproduce only the parts needed to define

extensions and re-definitions.

 3. A statechart for a sub-type which includes only states with different names from

the statecharts of the super-types defines an additional orthogonal statechart with

a separate event list. This is illustrated by figure 8.18.

 4. By naming one or more states with the same names as states in the super-type

statechart (including the state representing the super-type itself), we indicate that

the definitions of the states are being extended. Super-type states which appear

on the sub-type statechart are called extended states. The sub-type can embellish

2 Note that all the principles of inheritance apply even if A and B are themselves non-disjoint sub-types of a
common super-type.

 8.2 Specification model sub-typing 207

the extended states by adding new transitions and states, redefining existing

transitions and adding new nested states or concurrent machines within the

extended states. The target of initial state arrows cannot be changed. All states

and transitions not shown or overridden in the sub-type statechart, and the event

list, are inherited. Extension is illustrated by figure 8.19, in which the extended

state b1 is embellished in several ways, while the state b2 and the original

transitions are inherited.

A-S B-S

C-S

A-S

a1

a2

p
q

B-S

b1

b2

r
s

Resulting C-S

Events:
p
q

Events:
r
s

Events:
p
q

Events:
r
s

C-S

b1

b2

r
s

pa1

a2
q

A B

Figure 8.17 Inheritance with no extension

A-S B-S

C-S

A-S

a1

a2

p
q

B-S

b1

b2

r
s

Resulting C-S

Events:
p
q

Events:
r
s

Events:
p
q

Events:
r
s

C-S

c1

c2

t
u

Events:
t
u

Events:
t
u

c1

c2

t
ub1

b2

r
s

pa1

a2
q

A B

Figure 8.18 Inheritance with orthogonal extension

208 Sub-types, inheritance and conformance

Resulting C-S

A-S B-S

C-S

A-S

a1

a2

p
q

B-S

b1

b2

r
s

Events:
p
q

Events:
r
s

Events:
p
q

Events:
r
s
t
u

C-S

b1 b3

Events:
t
u

c

d

a1

a2

p
q

r

t

u

A

b1 b3

c

d

r

t

u
b2

s

r

B

Figure 8.19 Inheritance with embellishments

 5. An event with a pre-condition or incomplete guards (i.e. a set of guarded

transitions with guards whose sum is not true) may be refined in a sub-type by

weakening the pre-condition or guards, that is, by broadening the set of

conditions under which a transition will be taken.

 6. Transitions can be refined in a sub-type by re-targeting and by splitting. A re-

targeted transition is one which is refined to enter a new sub-state of its original

target state. This is shown in figure 8.20, in which the transition labelled r from

b2 to b1 is re-targeted to the state d in the type C. Note that the transition

labelled s from b1 to b2 is still inherited.

A transition is split by dividing it into two or more transitions which take

place under different circumstances, where the combination of the circumstances

is equivalent to the circumstances for which the original transition was defined.

Figure 8.21 shows two kinds of transition splitting: target-splitting (splitting by

guards) and source-splitting (splitting by states). Target-splitting is illustrated by

the transition labelled r from b2 to b1, which is split into two transitions guarded

on the value of the property x. When this kind of splitting is done, the logical

‘or’ of the guards on the split transition must be equivalent to the guard on the

original transition (i.e. true in the example), and all of the new transitions must

target either the original target or one of its sub-states.

Source-splitting is illustrated by the transition labelled s from b1 to b2, which

is split into two transitions from the sub-states of b1. When this kind of splitting

is done, there must be a transition with the same guard as the original from every

sub-state of the original source state. The purpose of this kind of splitting is to

 8.2 Specification model sub-typing 209

be able to generate different events (and possibly different post-condition

extensions) on the new transitions.

A-S B-S

C-S

A-S

a1

a2

p
q

B-S

b1

b2

r
s

Resulting C-S

Events:
p
q

Events:
r
s

Events:
p
q

Events:
r
s
t
u

C-S

b1 b3

Events:
t
u

c

d

a1

a2

p
q

r

t

u

b1 b3

c

d

r

t

u
b2

s

r

b2
r

A B

Figure 8.20 Re-targeting

B-S

C-S

B-S

b1

b2

r
s

Resulting C-S

Events:
r
s

Events:
r
s
u

C-S

Events:
u

b1

c

d
u

b2r[x<0]

x: Integer

r[x>=0]

s / v

s / w

b1

c

d
u

b2r[x<0]

r[x>=0]

s / v

s / w

B

Generations:
v
w

Generations:
v
w

Figure 8.21 Splitting

210 Sub-types, inheritance and conformance

 7. Transitions can also be refined by tightening their post-conditions, that is, by

adding more terms to the post-condition which are logically ‘and’ed with the

post-condition in the super-type. Only the new post-conditions need be stated in

the sub-type. If a transition is split, the inherited post-condition applies to all the

resultant transitions, which may separately tighten the post-condition.

State invariants can be tightened in sub-types by adding more terms. Only the

new terms need to be stated. Most often this is done by introducing invariants

into nested states introduced in the sub-type.

The invariant in a state must be consistent with the guards and post-conditions

on all of the incoming transitions; that is, there may not be any incoming

transitions whose post-conditions (including post-conditions specified in the

event list) do not logically imply the state invariant, assuming their guards to be

true.

 8. Normally, post-conditions in event lists are inherited. They may be refined by

tightening, in which case the inherited post-conditions need not be re-stated, and

the new post-conditions are logically ‘anded’ with the inherited ones.

However, if any new transitions are defined in a sub-type for events which

have a post-condition in the super-type event list, the post-condition is not

inherited3. In this case the sub-type statechart must show explicit post-conditions

for all of the transitions defined for this event in the super-type; it may have

additional transitions for the same event to which the post-condition in the super-

type’s event list does not apply.

Event list filters for refined transitions cannot be changed, and must be re-

stated exactly as in the super-type.

 9. If no generations are specified in the sub-type for an explicitly described

transition, the generations specified in the super-type are inherited. However,

any transition may be overridden in a sub-type to generate different events from

those generated in the super-type. If generations are explicitly shown in the sub-

type, the super-type generations are not inherited. The super-type generations

may be invoked with the keyword super if required.

 10. All the entry and exit generations shown on the super-type statechart apply

automatically to the sub-type, without needing to be restated. If they are restated,

they are being redefined, in which case the principles of rule 9 apply.

For an example of the application of rule 10, consider the type diagram shown

in figure 8.22, which shows an extension to the Minder type introduced in chapter

6. The UrgentMinder type describes objects which will keep generating alarms

while the minded object is outside its limit.

3Because there is no reason why it should apply to the new transitions.

 8.2 Specification model sub-typing 211

Mindable-S

movement : Number

Minder-S

SimpleMinder-S UrgentMinder-S

minded

interval : TimeInterval

limit : Number
desc : String

Figure 8.22 Type view for UrgentMinder

The statechart for UrgentMinder is shown in figure 8.23. It illustrates the

extension of the state Triggered with a new nested state, and the overriding of the

entry and exit generations, using super to refer to the generations in the super-

type.

Events:
alarmTimer(u : UrgentMinder)

Creation:
(l: Number, s: String) : (l,s)

UrgentMinder-S

Triggered

AlarmTimerWait

Entry:
super, startAlarmTimer(self, interval)

Exit:
stopAlarmTimer(self), super

alarmTimer / minderAlarm(self)

Figure 8.23 Illustrating rule 10

 11. Allowed events are inherited. Allowed events may be overridden by explicitly

defined events, which may be guarded and may introduce post-conditions and

generations. There are several examples in the shape editing system, for example

the up, down and move events which are allowed in figure 8.6 and overridden in

figure 8.9.

 12. Finalisation states are not true states for the purposes of inheritance. Any

transitions which end in a finalisation state in a super-type can be re-targeted by

212 Sub-types, inheritance and conformance

the sub-type to end at any state. The post-conditions of the original transition

will be inherited, and must be consistent with the new target.

 13. The above rules constrain the state structure of sub-types to match that of their

super-types very closely. Whenever state types are shown explicitly on the type

view in the specification model, they must exhibit the same structure as the

corresponding statechart.

8.2.2 Conformance is an ideal

The set of rules given above will usually ensure that an object of a sub-type may be

substituted for an object of a super-type, in the sense that it will respond to the same

sequences of events. However, there are some situations in which the rules break

down.

 1. Behaviour which updates restricted properties. By far the most important

kind of conformance breakdown may occur when a property or association is

over-ridden to restrict its range of values in a sub-type. Consider the simple

situation illustrated in figure 8.24, where a type X with an integer property i is

extended by a type LimitedX with an invariant limiting the value of i.

LimitedX-S

Invariants:
i < 10

i : Integer

X-S

Figure 8.24 Restricting a property

Now consider the statechart for X shown in figure 8.25, in which repeated

detection of the event increase will violate the invariant in the sub-type. This

problem is readily detected; how may it be solved?

We avoid the problem by using a different strategy in designing X. Instead of

responding to increase by always increasing i, the type is designed so that the

detected event is a request to increase i, which may be ignored by the detecting

object. Figure 8.26 shows the preferred statechart for X.

 8.2 Specification model sub-typing 213

Events:
increase(x: X) / [i’ = i + 1]

X-S

Figure 8.25 A dangerous statechart

Events:
requestIncrease(x: X) / increase(self)
increase(x: X) / [i’ = i + 1]

X-S

Figure 8.26 A safer statechart

With this statechart for X, the LimitedX sub-type can readily design a

behaviour for the event requestIncrease such as that shown in figure 8.27, which

is conformant with respect to this event and which also respects the constraint on

the property i.

Events:
requestIncrease(x: X)

Allow:
requestIncrease

LimitedX-S

requestIncrease [i + 1 < 10] / increase(self)

Figure 8.27 A statechart which conforms to the safer statechart

In fact we used exactly this strategy earlier when designing the behaviour for

the event move in figure 8.9. This particular strategy is very common, both in

specification and implementation models, in designing types for flexible

extension.

 2. Self-detected events. But what about the event increase in figure 8.27?

Although we have solved the problem for requestIncrease, increase itself

remains a problem because it could still be generated too many times by another

object.

In fact, when a statechart defines the generation of events which are detected

by the same object, as in many examples in this chapter, the conformance rules

214 Sub-types, inheritance and conformance

fail for the self-detected events. However, when defining a sub-type under these

circumstances, if the relationship between the generation and detection of the

self-detected events is left undisturbed, conformance still applies for the other

events.

 3. Behaviour dependent on properties of other objects. A transition may be

guarded by an expression which refers to one or more properties of another

object. A simple example is shown in figure 8.28 (repeated from chapter 6),

where the guard [abs minded.movement > limit] refers to the movement property

of the object called minded.

Armed

Events:
priceCheck(m : Minder [m = minded])
cancel(m : Minder)

Allow:
priceCheck

Active

Minder-S

priceCheck [abs minded.movement > limit] / minderAlarm(self)

priceCheck [abs minded.movement <= limit]

cancelTriggered

Generations:
minderAlarm(Minder)

Creation:
(l: Number, s: String) / [limit’ = l] [desc’ = s]

Figure 8.28 Guards referring to other objects

In such a case, the overall behaviour of the object given a particular sequence

of events depends to some extent upon the behaviour of the other object. When a

sub-type is created, the association named in the guard (minded in the example)

could be over-ridden to refer to another object with different behaviour, thus

affecting the overall response to certain sequences. Such over-riding should be

avoided.

8.3 Implementation model sub-typing

In the implementation model, the sub-typing principle deals with substitutability of an

object in the client–supplier relationship as a receiver of messages.

As discussed in chapter 7, structural conformance in the implementation model

follows the same rules as the other models, except that the rules are interpreted in

terms of reception of messages.

 8.3 Implementation model sub-typing 215

The rules for behavioural conformance in the implementation model are the same as

the corresponding rules in the specification model set out in the preceding section,

again except that the rules are interpreted in terms of message reception rather than

event detection.

As with the specification model, the principle of client–supplier substitutability is

strictly limited. Because one type conforms to another in the client–supplier

relationship, it certainly does not follow that instances of the conforming type can be

substituted successfully in a complete software system. Type-conformance says

nothing at all about the messages sent by instances of a type. If we were to insist that

type-conformance included a complete specification of the messages sent by instances

of a type, and thus ensure total substitutability within a complete software system, we

would have such a strong definition of sub-type as to be almost useless in practice.

Most object-oriented programming languages’ definitions of sub-type are purely

structural, based solely on the static properties of types, that is, if an operation exists in

a super-type, the existence of a corresponding operation in a sub-type is sufficient to

ensure conformance. Our definition is considerably stronger, because we also require

that the state structure conforms, that is, that all sequences of messages accepted by the

super-type will be accepted by the sub-type and leave it in a corresponding state. In

our experience, designing this level of conformance is an excellent discipline for

implementing reliable software.

Note that even in programming languages which offer no support for reasoning

about the state structure of a type (such as C++), it is still essential for instances of a

sub-type to respond to all sequences of messages (member function calls) accepted by

a super-type, otherwise the program will fail. Using our techniques the designer can

reason explicitly about the necessary properties of the client–server sub-type

relationship.

The Eiffel language provides some support for documenting and reasoning about

the state structure of a type, using pre- and post-conditions. There is a correspondence

between pre- and post-conditions and state structure: the pre-condition for an operation

describes the set of states in which invocation of that operation is valid, and the post-

condition describes the state of the object resulting from the invocation. In Eiffel,

type-conformance for assertions on an operation is formulated according to the

following rules:

• Pre-conditions may be weakened (i.e. the sub-type may respond to a message in

more states than the super-type).

• Post-conditions may be strengthened (i.e. the sub-type promises to ensure the

same results as the super-type, and possibly more).

The statechart formalism allows us to say more than this about the logic of type-

conformance. Weakening pre-conditions is equivalent to providing more transitions

for a given message, or weakening guards on existing transitions, provided all existing

transitions are preserved. Strengthening post-conditions on existing transitions is

equivalent to promising to ensure the same result as the super-type, given the client’s

216 Sub-types, inheritance and conformance

expectations. New transitions for an operation can have any post-conditions they like,

provided they are consistent with the type’s invariants, since these transitions do not

form any part of a client’s expectations about the super-type.

8.3.1 Sub-type statecharts

When we define a sub-type in the implementation model it inherits the statecharts of its

super-types, in the same way as it does in the specification model. New orthogonal

state machines may be added, and inherited machines may be refined.

The basic principles of sub-type conformance and the consequential rules for

statechart composition described in detail in the preceding section for the specification

model apply almost unchanged in the implementation model, and we will not repeat

them here. However, there are a few differences to be noted.

As in the specification model, the statecharts of super-types become states inside

orthogonal state machines in the sub-type. Since orthogonal machines in

implementation model statecharts must partition the updater operations, it follows that

no two super-types may have an updater with the same name.

Implementation model statecharts do not have event lists or generation lists, but the

rules concerning the contents of event lists (pre- and post-conditions) apply equally to

updater lists, and the rules about event generation apply to message generation.

8.4 Essential model sub-typing

The essential model describes the states of a system in terms of its structure, and

possible changes in the system’s state in terms of possible sequences of events. A

sequence of events is accepted by an essential model if it is accepted by all of the

model’s state machines; otherwise it is rejected.

Structural type-conformance in the essential model is simple and helpful, and

encourages seamless development. Clearly, structural type-conformance in the

essential model can map very straightforwardly into the specification and

implementation models, because the rules for all three interpretations are effectively

the same. What about behavioural conformance?

In the essential model, the set of expectations to which a sub-type would intuitively

conform behaviourally would be the set of sequences accepted and rejected by the

super-type. For example, if a Switch accepts the sequence <on,off,on,off, ...>, we might

expect a sub-type of Switch to accept some other events as well, for example <on,off,

count, on, off, count, ...>, but we probably would not regard something that accepted

<on,on,on,on, ...> as a Switch. Here is a considerable difference between things in the

world and objects in the software, because our definition of sub-typing in software

would certainly allow us to have a Switch component able to accept an infinite

sequence of on events (and presumably ignore all but the first).

 8.4 Essential model sub-typing 217

We might have proposed a theory of type-conformance for essential models based

on the idea of keeping the set of sequences over the same event types fixed, but

allowing the introduction of new event types. However, for reasons too complex to go

into here, this proposal turns out to have theoretical problems. More importantly, we

don’t think that much would be gained by enforcing this kind of conformance in

essential models. So our conclusion is that essential model conformance is simply

structural. The consequence of this conclusion for statecharts is that we need only

ensure that a sub-type has a state structure conformant with its super-types; there is no

need for event lists or transitions to match in any way. An object of the sub-type may

be interested in different events from its super-types, and is free to move between its

states in any way its wishes, possibly in a way totally different from its super-types.

We complete our story on type-conformance in essential models (1) by showing

how state-types are inherited, and (2) by describing the relationships between sub-type

and super-type statecharts.

8.4.1 Inheritance of state types

Imagine we drew state types for Bottle, as in figure 8.29.

Bottle

capacity : Number
content : Number

Invariant:
const capacity

Empty

Full

Sealed

Figure 8.29 State types for Bottle

We must consider how to treat those state types when there are sub-types of Bottle.

In figure 8.30 we show a sub-type of Bottle, called PressureBottle, which introduces

new states. Because none of the states of PressureBottle have the same name as states

of Bottle they are independent, or orthogonal, and PressureBottle inherits the states of

Bottle. That is, a PressureBottle object can be in any one state taken from Bottle and

simultaneously in any one state taken from PressureBottle. Orthogonal states were

described in detail in chapter 5.

In figure 8.31 the states of PressureBottle have the same names as the states of

Bottle, and therefore replace, or override, the inherited states. This is permitted

provided the structural relationships between the states are the same in the sub-type as

in the super-type. Here, the three states of Bottle are mutually exclusive; they remain

218 Sub-types, inheritance and conformance

mutually exclusive in the sub-type, although new states have been inserted. Therefore,

PressureBottle is structurally conformant with Bottle, as it must be.

Bottle

capacity : Number
content : Number

Invariant:
const capacity

PressureBottle

pressure : Number

Unpressurised

Pressurised

Gas

name : String
pressure : Number

Empty

Full

Sealed

Figure 8.30 Orthogonal states in sub-type

Bottle

capacity : Number
content : Number

Invariant:
const capacity

PressureBottle

pressure : Number

Unpressurised

Pressurised

Gas

name : String
pressure : Number

Empty

Full

Sealed

Unsealed

Empty

Full

Sealed

Figure 8.31 Overridden states

In figure 8.32 not all the Bottle states have been overridden in the sub-type.

Therefore, the non-overridden states, the state Sealed in this example, are inherited in

 8.4 Essential model sub-typing 219

the simplest way possible that maintains structural conformance. The effective

position of the Sealed state is shown by the grey box.

Bottle

capacity : Number
content : Number

Invariant:
const capacity

PressureBottle

pressure : Number

Unpressurised

Pressurised

Gas

name : String
pressure : Number

Empty

Full

Empty

Full

Sealed

Sealed

Figure 8.32 Partial inheritance

8.4.2 Sub-type statecharts

Consider again figure 8.30, which shows a type view of a situation involving bottles

and, as a specialisation, pressurised bottles, which add additional properties and

associations. The states of PressureBottle are orthogonal to those of Bottle, implying

separate state machines. The state machine for Bottle appears as figure 8.33.

Bottle

Empty Full

Events:
fill (b : Bottle) / [content’ = capacity]
cap (b : Bottle)
pack (b : Bottle)

Creation:
(c : Number) / [content’ = 0] [capacity’ = c]

fill pack
Sealed

cap

Figure 8.33 Bottle statechart for PressureBottle example

The simplest situation is where PressureBottle wishes to use the state-changing

behaviour of Bottle without modification; this occurs frequently when sub-types

220 Sub-types, inheritance and conformance

introduce only orthogonal states. Rather than reproducing the statechart for Bottle in

the statechart for PressureBottle, we can just include it, as in figure 8.34.

PressureBottle

Events:
pressurise (b : PressureBottle, g : Gas)

/ [pressure’ = g.pressure]
Creation:

(c : Number) : (c) / [pressure’ = 0]

Unpressurised

pressurise

Pressurised

Bottle

Figure 8.34 Simple PressureBottle statechart

The state named Bottle represents the entire statechart of that type, in line with the

idea that a statechart can be used as a state4. Since the Bottle statechart includes its

own event list, this PressureBottle statechart has two independent units. As a

shorthand, we might omit the left-hand side of the statechart altogether, since it is

implied by the type view5. If we now modify the type view to make Unpressurised and

Pressurised states that enclose the super-type states, as in figure 8.35, we must modify

the statechart6.

Now we cannot simply include the Bottle statechart; it has been superseded by that

of PressureBottle, which must include all details. The new statechart is shown in

figure 8.367.

To summarise, in the essential model our options for sub-type statecharts are either

explicitly to include the super-type statechart unchanged or to replace it with a full

description of states and transitions, ensuring that the state structure remains

conformant with the super-type.

4Note that the creation operation of Bottle is not included in the PressureBottle statechart by using this notation.

5This is largely a tool issue.

6This rearrangement of states is still structurally conformant because the super-type states are still mutually
exclusive.

7Notice that, even though this statechart is completely separate from that defined for Bottle, we do not need to show
all the creation post-conditions. The forwarding of creation parameters to the super-type indicates that the post-
conditions of the Bottle creation operation apply.

 8.4 Essential model sub-typing 221

Bottle

capacity : Number
content : Number

Invariants:
const capacity

PressureBottle

pressure : Number

Unpressurised

Pressurised

Gas

name : String
pressure : Number

Empty

Full

Sealed

Unsealed

Empty

Full

Sealed

Figure 8.35 Extended type view

PressureBottle

Empty Full

Events:
fill (b : Bottle) / [content’ = capacity]
pressurise (b : PressureBottle, g : Gas) / [pressure’ = g.pressure]
cap (b : Bottle)
pack (b : Bottle)

Creation:
(c : Number) : (c) / [pressure’ = 0]

pack

Sealed

cap

Unpressurised
Unsealed

Pressurised

pressurisefill

Figure 8.36 PressureBottle statechart

222 Sub-types, inheritance and conformance

8.5 Summary

• The sub-typing relationship is relative to a given set of expectations.

• This set of expectations is called a contract.

• Inheritance is not sub-typing.

• Type-conformance is a theoretical ideal, which cannot be completely satisfied in

practice.

• There are three aspects of sub-typing: structural type-conformance, behavioural

type-conformance, and inheritance.

• In the specification model, type-conformance is both structural and behavioural.

• Specification model sub-typing means substitutability of components as event

detectors.

• Absent transitions and pre-condition failure mean behaviour is undefined in the

specification model.

• The structure of statecharts is inherited in sub-types.

• New states and transitions may be added in sub-types, and existing transitions

redefined, according to rules which preserve the response to sequences of events.

• Conformance rules may break down under certain circumstances.

• The request technique may be used to design types which may be extended more

flexibly.

• In the implementation model, type-conformance is both structural and

behavioural.

• Implementation model sub-typing means substitutability of components as

message receivers.

• The notations here can say more about sub-type relationships than popular

programming languages.

• The rules for statechart inheritance for the implementation model follow the

specification model very closely.

• Essential model sub-typing is only structural.

• The statechart of an essential model sub-type must conform to the statecharts of

its super-types by preserving their state structure. It need not conform in terms of

events or transitions.

8.6 Bibliographic notes

Good discussions about type-conformance can be found in the literature about the

Eiffel programming language, notably [Meyer88] and [Meyer92]. There have been

many research papers written about the semantics of data types with particular

reference to sub-types and polymorphism; [Carde84] is among the most influential of

these. A more general and somewhat more accessible treatment of the theory of data

types can be found in [Carde85]. An interesting discussion of extension and restriction

in sub-types can be found in chapter 4 of [Rumba91].

 8.7 References 223

8.7 References

[Carde84] L. Cardelli. A semantics of multiple inheritance. Semantics of Data Types, pp 51–68.

Lecture Notes in Computer Science no. 173, Springer-Verlag, 1984.

[Carde85] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.

ACM Computing Surveys 17(4), 1985.

[Meyer88] B. Meyer. Object-oriented Software Construction, Prentice-Hall, Hemel Hempstead,

Hertfordshire, 1988.

[Meyer92] B. Meyer. Applying ‘Design by Contract’. IEEE Computer, 25(10): 40–51, 1992.

[Rumba91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented

Modeling and Design, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

224

CHAPTER 9

Concurrency

9.1 Threads of control

The implementation model must take account of the finite speed of the computer.

Unlike events, messages cannot be considered to be instantaneous. Real-world

occurrences won’t wait for the software to be ready; the software must be able to detect

stimuli at the rate they occur and must have policies to decide how to sequence the

processing. This involves understanding and solving the problems inherent in the

design of concurrent, multi-threaded software.

Concurrency occurs when there is more than one thread of control executing

through the software. Unless the computer has more than one processor, we should

more correctly refer to this phenomenon as pseudo-concurrency, or multi-

programming. In a pseudo-concurrent environment, the language run-time system or

the operating system will decide when to stop executing one thread and begin

executing another. It is very likely that even if the computer has more than one

processor, the allocation of work to the processors will be outside the control of the

software designer and programmer. In some environments, threads can relinquish the

processor only at specific points in their execution, typically when they access system

resources (co-operative multi-tasking); in others, a thread’s execution may be

interrupted at any point (pre-emptive multi-tasking).

Concurrency is required in any software system which needs to begin processing a

stimulus before having finished processing the preceding one(s). The techniques

associated with concurrency are also extremely useful when the system needs to be

ready to react to one of a number of stimuli coming from different sources, because

each source can be considered as a different thread and dealt with independently.

Systems with this architecture are called event driven. Concurrency is not always

required in event-driven systems; it may be that each stimulus can be processed

completely before processing of the next begins.

Popular belief is that concurrency is of concern only to people who design systems

software or real-time systems – such as operating systems, signal switching or process

control applications – and of no concern at all to those who design business and

 9.1 Threads of control 225

information systems. This may have been true in the past but it is certainly untrue

now. The days when all business applications were data transducers, reading an input

file and producing an output file, are over. Today, a typical business application might

have an event-driven graphical user-interface, data feeds over communication lines

coming from several sources and shared access to a multi-user database. Developing

these systems demands knowledge about concurrency and the techniques needed to

control it.

A thread of control is defined by its execution context. An execution context

defines a thread’s current point of execution and, for object-oriented programs, the

message-sending sequence by which it reached that point (often called its stack).

Object A

message m1 operation m1 message m2

Object CObject B

message m3operation m2 operation m3

return address in
sender of m1

older uncompleted
message-sends

return address in
sender of m1

older uncompleted
message-sends

return address in
Object A of m2

return address in
sender of m1

older uncompleted
message-sends

return address in
Object A of m2

return address in
Object B of m3

Figure 9.1 Execution stack

Figure 9.1 shows an example of a thread of control and its associated stack. When

Object A gets control as a result of receiving message m1 and running operation m1, the

most recent item on the stack will be the address in the sender of m1 to which control

must return1. As Object A and Object B send further messages the stack builds up until

Object C returns control and the stack unwinds. Each thread of control in the system

has its own stack.

It must be recognised that the most popular object-oriented programming languages

of today, C++ and Smalltalk, do not have anything approaching full support for

concurrency. They were designed as strictly sequential languages, with a single thread

of control. In particular, C++ has no standardised support at all, while Smalltalk has

some limited standard support via its class library. This is in contrast to languages

designed from the outset with concurrency in mind, such as Emerald [Black86], POOL

[Ameri87], DRAGOON [Atkin91] and the Actor languages2 [Agha86].

1In practice, the stack is used to hold other context-related information, not just return addresses. Such information
includes message parameters and space for temporary variables.

2Not to be confused with the C-like language called Actor.

226 Concurrency

9.2 Strategies for concurrency

There are two basic strategies for supporting concurrency in object-oriented (or object-

based) programming languages, called orthogonal and integrated by [Atkin91]. In the

orthogonal strategy the threads of control are independent of the encapsulation

boundaries of objects, weaving their way in and out of objects as they please, as

suggested in figure 9.2, where we can see a thread initiated in object A (but not really

belonging to it) making its way through objects B, C and D3. This happens because

object A sends the message m1 to object B, moving the execution context into B. Then

B sends the message m2 to C and the same thing happens again. Notice that the

operations invoked by the messages execute in the thread of the message-sender.

“A”
“B”

“C”

“D”

m1

m2

m3

Figure 9.2 Orthogonal concurrency

Since in the orthogonal strategy the concept of threads is in no way integrated with

the sequential programming language, the programmer must decide for his or her self

how to ensure the integrity of the system in the presence of multiple threads.

In the integrated strategy the threads are, in some way, owned by objects and their

effects beyond the object boundary are closely controlled. The Actor languages

generate a new thread to process each message, making message processing

asynchronous; we can try to represent this style in a process flow diagram, as in figure

9.3. When message m1 arrives at object B it causes a new thread to be forked to

execute the operation. Control passes back immediately to the caller, preventing the

use of messages to return results. The same thing happens with m2 and m3.

The proposed mechanism for concurrency in Eiffel [Meyer93] allocates a thread to a

set of objects and all their operations execute in that thread rather than in the thread of

the caller. In the simple case each object has its own process and execution behaves

rather as in figure 9.4.

3This diagram, and others like it that follow, are not intended for formal interpretation; they merely give an
impression of the actions of threads.

 9.2 Strategies for concurrency 227

“A”
“B”

“C”“D”

m1

m2

m3

Figure 9.3 Actor-style concurrency

“A”
“B”

m1

“C”

m2

“D”
m3

Figure 9.4 Eiffel-style concurrency

When the process allocated to object A sends the message m1 to object B, one of

two things can happen: if the message needs an immediate result A’s thread is blocked

until B’s thread has processed the message; if no immediate result is required, A’s

thread can continue and the message will be processed sometime later by B’s thread. If

and when A needs to rely on the result of m1, it must wait until m1 is complete4.

Other languages, such as DRAGOON, use the concept of active objects: an active

object is an object which owns a thread of control. To use the terminology of Booch

[Booch91], active objects may be actors5, providing no services to others but initiating

actions by sending messages to other objects, or agents, both providing services and

initiating actions. Although the operations provided by active objects execute in the

thread of the caller, as in the orthogonal strategy, they can queue the message content

for later processing by their thread, thereby providing a form of asynchronous

4The scissor-like symbol used in the diagram to represent synchronisation between threads is the symbol we have
used elsewhere to represent Ada-style rendezvous. This is not to imply that the proposed Eiffel scheme has
anything at all to do with Ada – or rendezvous. We have used this notation to help give a sense of the processing
involved.

5Also not to be confused with the C-like language called Actor.

228 Concurrency

messaging. Not all objects in the system need be active; some may do all their

processing in the thread of their caller. The execution flow using active objects might

be like that shown in figure 9.5.

“A”
“B”

“C”

“D”

m1

m2

m3

Figure 9.5 Active objects

Object A is active: it has its own thread of control, which is used to send the m1

message to B. The B object is not active and the operation invoked executes entirely in

A’s thread. During the processing of m1 the B object sends the message m2 to C, which

is active. C has decided to buffer the contents of m2 messages for asynchronous

processing so it places information in a queue. C’s thread empties the queue and sends

an m3 message to D, which is not active.

Each of these ways of integrating concurrency with object-oriented programming

has its benefits; they are all much superior to the ad hoc, orthogonal approach because

they provide a framework for reasoning about and managing concurrent processing.

We favour the active object approach as combining both simplicity and flexibility.

Active objects can readily be simulated in languages such as C++ and Smalltalk

using the ad hoc concurrency and synchronisation facilities found in class libraries. It

then becomes a matter of programmer discipline to ensure success. Here we will

concentrate on the abstract design of concurrent systems, using a set of well-formulated

techniques and notations.

9.3 Serialisation

Concurrency is an implementation problem because it can endanger the integrity of

objects. Two threads may simultaneously execute the same operation on an object,

leading to corruption of the object’s state data. We say the operation is being multi-

threaded. Similar problems occur in single-threaded systems when there is unexpected

or uncontrolled recursion (re-entrancy). The serialisation techniques described here are

useful as a way of ensuring the correctness of single-threaded systems, as well as

 9.3 Serialisation 229

multi-threaded ones, although we might use the techniques more as a design guide than

as an implementation strategy.

The main technique for avoiding corruption or erroneous behaviour as a

consequence of multi-threading is serialisation. The code areas which might cause

corruption if multi-threaded are identified and measures are taken to ensure that only

one thread at a time executes those areas. Such areas are often called critical sections.

What, then, happens to a thread of control which attempts to execute a critical

section when another thread is already executing it? The thread must wait. We say

that the thread is blocked; it cannot proceed until the other thread has finished

executing the critical section. Threads may be allocated a priority. Priorities are used

by execution environments to decide on the allocation of resources (typically critical

sections but also processors when the number of threads exceeds the number of

processors) to threads. So if two or more threads are blocked waiting to enter a critical

section, we might assume that the thread with the highest priority will gain access first.

We don’t state this as a fact, merely as an assumption, because the scheduling of

threads may be outside the designer’s control. Thread priorities should never be used

to ensure correct program logic, only to express the desired allocation of resources.

Neither do we specify the order in which threads with equal priority will be allocated

resources, except to say that we expect threads to be treated fairly. In practice, it is

usual for threads with equal priority waiting to enter a critical section to be held in an

queue ordered by time of arrival.

9.3.1 Observers and updaters

In chapter 7 we distinguished between operations on objects which do not affect their

state (or the state of any object on the system), called observers, and operations which

do, called updaters. We will now set out the rules which apply to the execution of

observers and updaters. Initially, we will set out the basic principles, then we will

discuss three extensions that simplify designs and improve their quality.

9.3.2 Basic concurrency rules

To ensure integrity we require that, for every type of object, all the updater operations

are critical sections. Furthermore, we require that the updaters of any object are

mutually exclusive: no two updaters may ever execute concurrently. A thread

attempting to execute an updater when another updater is in progress will be blocked.

This means that not only will it be impossible for any updater operation to be multi-

threaded but no two threads can ever be active inside updaters in the entire object.

These rules are necessary because an updater, by definition, is changing the internal

state of an object. The object is not in a consistent state until the updater has finished.

Observers are not critical sections and do not need to be mutually exclusive, but

they must never execute concurrently with an updater. We can be more lenient with

230 Concurrency

observers because they do not change the object’s state and thus it can never be made

inconsistent by their execution. On the other hand, attempts to observe an object’s

state while it is being changed by an updater must, obviously, be prohibited.

This is the familiar one writer, many readers protocol, which underpins most

concurrency schemes. Any object may have many simultaneous readers but only ever

one writer at a time, and an object cannot be read and written at the same time.

These rules explain why we chose a particular implementation strategy for dealing

with price changes in sectors in the share minding system that appeared in chapter 7.

Imagine we were to design a mechanism in which the share sent a priceAdjust message

to the sector without sending a parameter, as shown in figure 9.6.

(Share)
[in Priced]

s1
(Sector)

priceChange
(1) priceAdjust

(1.2) movement

(Share)
[in Priced]

s2

(1.1) movement

Figure 9.6 Concurrency conflict

If, as we chose in chapter 7, the sector is storing its movement property as data it

would be forced to recompute the property by sending movement messages to all its

shares, but this would not work because the share s1 cannot respond to a movement

message (an observer) while in the middle of executing priceChange (an updater).

Assuming that the concurrency rules described here are implemented explicitly, the

result would be a deadlock, or deadly embrace. The software would hang. If the

concurrency rules are used only as a design guide, the result of execution would be

undefined.

9.3.3 Invoking local observers

Although rigorous enforcement of the rules given above will guarantee integrity, they

can be overly restrictive in practice. One particular problem is that it is often useful

when coding an updater to access the object’s state using observers. The rules just

outlined would result in a deadlock because the observer cannot execute until the

updater has finished and the updater cannot finish until it has executed the observer.

We have said that the reason for prohibiting the execution of observers during updaters

is to ensure that the observed state is consistent. We take the view that the

 9.3 Serialisation 231

implementor of an updater can reasonably be assumed to be aware of what they are

doing and to know the risks of calling observers. Therefore, we ease the rules so that

observers invoked directly from updaters (i.e. invoked by messages sent to self) will

not cause deadlock6. Note that this easing of the rules does not extend to other objects

because our encapsulation principles mean that we must never allow one object to

observe another that is in an inconsistent state, even intentionally.

9.3.4 Secured and relaxed sections

The sharp-eyed reader may notice that we appear already to have broken the rules

detailed above in an example in chapter 7, reproduced here in a slightly different form

as figure 9.7.

(Share)
[price = 100]

[movement = 12]
(3.1) movement

(Minder)
[limit = 10]
[in Armed]

(3) priceCheck

(AlarmStore)

(3.2) minderAlarm(self)

(Sector)

priceChange(102, d, t)

(1) priceAdjust(2)
(2) priceChange(102, d, t)

Figure 9.7 An apparent concurrency conflict

The share has sent the priceCheck message to its minder as part of the processing of

priceChange, an updater. The minder, needing to evaluate its guard condition, sends

the movement message, an observer, to the share. Apparent result: deadlock.

The traditional solution to this problem (e.g. as in HOOD [ESA89]) is to accept the

restriction and devise a software architecture that acknowledges it. Recognising that

problems of this kind occur only when message-sending forms a cyclic pattern, we

might decide to organise our objects into a service hierarchy, where higher-level

objects may only send messages to lower-level objects, as illustrated in figure 9.8.

A consequence of adopting this kind of architecture would be that all information

about higher-level objects needed by lower-level objects must be passed as parameters

because the lower-level objects cannot ‘call back’ the higher-level objects to obtain it.

This leads to a programming style that sits uneasily with many object-oriented

6This can readily be implemented by coding two functions for each observer: one, used by other clients and subject
to the usual concurrency rules, which calls the other, private, version, used directly from within the updaters. This
second version contains the code for the operation and is not subject to the concurrency rules.

232 Concurrency

programmers; a style that leaves little flexibility in the interfaces. Any change in the

information needs of a lower-level object must result in a change to its interface.

Although the use of service hierarchies will clearly solve the problem, we wish to find

a solution more in tune with the goals of object-oriented software development.

(Share)
[price = 100]

[movement = 12]

(Minder)
[limit = 10]
[in Armed]

(3) priceCheck(14)

(AlarmStore)

(3.1) minderAlarm(desc, limit, 14)

(Sector)

priceChange(102, d, t)

(1) priceAdjust(2)
(2) priceChange(102, d, t)

Level 1

Level 2

Level 3

Figure 9.8 Service hierarchy

As we pointed out in chapter 7, the three messages priceAdjust, priceChange and

priceCheck sent by the share in the previous examples meet different needs. The

priceAdjust message is sent to establish a consistent state, to ensure that the sector’s

invariant can be met. The priceChange and priceCheck messages are sent to trigger

some consequential but independent action once a consistent state has been

established. It is clear, therefore, that we must certainly not allow the sector to execute

observers (or updaters) of the share as a result of receiving priceAdjust because the

share might not be in a consistent state. But since the share does not send priceCheck

until it has ensured that the system is in a consistent state, why should we prohibit the

minder from executing observers (or updaters) of the share?

You will recall from chapter 7 that we divide the processing of an updater into two

sections: the secured section followed by the relaxed section. All messages sent to

establish system consistency, and all other code to establish the operation’s post-

conditions, must be in the secured section. Messages that trigger subsequent,

independent actions, that is, those which forward notification of stimuli or correspond

to generated events, are sent from the relaxed section.

The relaxed section is so called because we can take a more relaxed view of the

concurrency rules when executing that section. But relaxed does not mean

unconstrained.

 9.3 Serialisation 233

Consider an updater operation containing the following message-sends:

 -- secured section

 a.fixup

 b.fixup

 -- relaxed section

 c.action1

 -- point x

 d.action2

Although the object is in a stable and consistent state by the time it reaches the relaxed

section, it still requires that action1 and action2 are performed strictly in that order.

However, if we make the relaxed section completely free of concurrency constraints

the thread executing the updater could be suspended at point x and another thread could

begin executing the updater. The consequences of this might be that a second action1

is performed before the first action2. This might be disastrous if the operation were to

exchange the positions of two sets of control rods in a nuclear reactor7:

 -- secured section

 …

 …

 -- relaxed section

 firstSetOfRods.moveOutBy(3)

 secondSetOfRods.moveInBy(3)

So what does ‘relaxed’ mean? We define it to mean that the critical section and

mutual exclusion rules are lifted for the current thread only. Other threads still cannot

begin execution of any updater or observer until the current observer has finished

completely. The current thread can execute, directly (using self) or indirectly (from

another object), another updater or an observer (or even the same updater). When an

object is ‘relaxed’ (i.e. has a current updater executing its relaxed section) and it begins

executing an updater or observer for the current thread the normal concurrency rules

apply during that execution. So, on entry to the second updater the object becomes

‘secured’ again, until the relaxed section is reached, when it becomes ‘relaxed’. When

the second updater ends and control returns to the first updater the object is still

‘relaxed’.

Figure 9.9 might help to clarify what is going on. Object 1 has no active updater or

observer when it begins executing updater1. It immediately becomes ‘secured’, and

none of its updaters or observers may begin execution, with the single exception of

observers invoked directly from within updater1. Object 1 then enters the relaxed

section of updater1, in which it sends the updater3 message to object 2. As part of its

7This example is somewhat fanciful because everyone knows that the system would always be designed to push the
first set of rods in before pulling the second set out… .

234 Concurrency

relaxed section, object 2 sends the updater2 message to object 1. Because object 1 is

‘relaxed’ and because the call is in the same thread of control, updater2 can be

executed and the thread is not blocked. Object 1 immediately becomes ‘secured’ again,

until it enters the relaxed section of updater2, when it becomes ‘relaxed’ again.

Control passes back to object 2 and, from there, back to the relaxed section of

updater1. Finally, updater1 ends, object 1 become unrestricted once again and control

returns to the original sender.

object 1

object 2

updater1
secured section

relaxed section

updater2
secured section

relaxed section

updater3
secured section

relaxed section

object 1 unrestricted

object 1 secured

object 1 relaxed

updater3

updater2

Figure 9.9 Secured and relaxed sections

We must never place in the relaxed section of an updater code that changes the state

of the object, other than by sending updater messages to self. All state changes implied

by an updater’s post-conditions must be completed in the secured section; the secured

section must ensure that all post-conditions and system invariants have been

established prior to the object becoming relaxed. Since the return value (if any) of an

updater is specified as a post-condition, it follows that this value cannot be determined

in the relaxed section.

In our discussion of statecharts in the implementation model in chapter 7, we said

that the relaxed section of an updater executes once the new state has been entered.

Since other updaters on the same object can validly be activated from the relaxed

section, it is perfectly possible for another transition to be triggered, from the new

state, during execution of the relaxed section. If that happens, the second updater will

execute completely, together with all its consequential effects, before control returns to

the original point. This is exactly what was illustrated in figure 9.9. The object might

change state several times before the original relaxed section is completed. Each time

an updater message is received by the object it is interpreted in the context of the

object’s current state.

 9.3 Serialisation 235

9.3.5 Invoking local updaters

Objects are frequently designed to have several layers of abstraction. Simple

operations, often inherited from super-types, are combined to form larger, more

powerful, operations. For example, we might want to define an updater operation for

shares, called changeAndSuspend, that both changes their price and suspends them.

This operation could be implemented by sending successive priceChange and suspend

messages to self. Our serialisation rules do not prevent the creation of this operation.

The sending of the priceChange and suspend messages must be done in the relaxed

section to avoid deadlock; the secured section will be empty.

The difficulty comes when a new, composite, updater must return a result based on

the results of messages sent to self within it. In chapter 7 we considered the behaviour

of the alarm store used by minders; we reproduce the AlarmStore statechart here as

figure 9.10.

AlarmStore-I

Empty OK Full

Creation:
(n : Number, m : set of Minder) / [size’ = n] [managed’ = m]

Updaters:
minderAlarm(m : Minder) [m ∈ managed] / [queue’ = queue � [m]]
nextAlarm : Minder / [nextAlarm’ = head queue] [queue’ = tail queue]

minderAlarm

minderAlarm [#queue < (size - 1)]

minderAlarm [#queue = (size - 1)]

nextAlarm [#queue > 1]

nextAlarm [#queue = 1] nextAlarm

clear / [queue’ = []]

Figure 9.10 Alarm store

Now imagine we wish to define a new operation for alarm stores, called

nextAndClear, that returns the next alarm and cancels the rest. The obvious way to

design this is using successive nextAlarm and clear messages sent to self, as follows:

nextAndClear / [nextAndClear’ = nextAlarm] clear

Since this new operation returns a result we must send nextAlarm in the secured

section, but that will cause deadlock. We resolve this difficulty with the third and last

of our extensions to the serialisation rules. We allow updaters to be partitioned into

independent groups, and for an updater in one group that is executing in its secured

236 Concurrency

section to invoke, directly using self, an updater in another group. There are limits to

this. Updaters invoked in this way, by sending a message to self in the secured section

of an updater from another group, cannot have relaxed sections8. Also, each group

cannot be executing more than one updater in a secured section, so calling backwards

and forwards between groups is not possible.

Orthogonal state machines

We use orthogonal state machines in implementation model statecharts to partition

updaters into orthogonal groups. Each orthogonal machine describes a group of

updaters, and the secured sections of one group may directly invoke updaters in

another by sending a message to self.

Figure 9.11 shows a revised statechart for AlarmStore. The nextAndClear updater

must be in a separate group to nextAlarm and clear; this is specified by placing it in an

orthogonal state machine.

It is important to note that the presence of orthogonal machines does not mean that

updaters are being multi-threaded. The orthogonal state machines do not operate

independently, each with its own separate concurrency controls. The controls that

serialise threads apply to the whole object. If a thread is already executing an updater,

no other thread can begin executing a second one, even if it is in a different group. An

object can be processing updaters on behalf of only one thread at a time.

AlarmStore-I

Empty OK Full

Updaters:
minderAlarm(m : Minder) [m ∈ managed] / [queue’ = queue � [m]]
nextAlarm : Minder / [nextAlarm’ = first queue] [queue’ = tail queue]

minderAlarm

minderAlarm [#queue < (size - 1)]

minderAlarm [#queue = (size - 1)]

nextAlarm [#queue > 1]

nextAlarm [#queue = 1] nextAlarm

Normal

nextAndClear [not in Empty] /
[nextAndClear’ = nextAlarm]
clear

clear / [queue’ = []]

Figure 9.11 Orthogonal machines

8This is because it would be difficult to determine the meaning of a relaxed section under such conditions. The
object as a whole is certainly not relaxed, because it has an updater executing in a secured section.

 9.4 Synchronisation specifications 237

9.3.6 Creation operations

Creation operations affect the state of the object. Therefore, they must be treated in

exactly the same way as updaters and be subject to the same rules. They have secured

and relaxed sections. Some things are just not possible for creation operations; for

example, they can never be re-entered. But it is possible for them to cause updater

messages to be sent to the new object, so we must take the normal precautions.

9.3.7 Rules and pragmatics

Since we are unaware of any programming language that offers the above-described

concurrency semantics directly, it is the responsibility of the implementor to realise

them in the chosen language using whatever facilities are available in the operating

system, language run-time system or libraries.

We want to make it clear that the concurrency rules we have arrived at are not

foolproof. The foolproof rules are those which never allow any concurrent execution

of updaters, but we reject those rules as too restrictive. If you want to observe

foolproof rules, put all your code in the secured section. The rules we suggest are not

foolproof because the action ordering error described in the reactor control rods

example, when two threads simultaneously execute in the relaxed section, can still

occur within a single thread if the same updater is re-entered. We defend our rules by

pointing out that if they do cause erroneous behaviour, the same error would have

occurred in a non-concurrent environment, because the error has occurred within a

single thread, unaffected by others. Our rules do not prevent you from writing

erroneous sequential programs but they do prevent concurrency from causing extra

problems.

Although we recommend that you design your software in strict accordance with the

rules specified here, you may wish to optimise the implementation by omitting critical

sections where it is possible to reason that they are redundant. For example, you may

choose an implementation architecture that limits the number of threads executing in a

particular area of the system to just one. Within this area serialisation controls could

be omitted9.

9.4 Synchronisation specifications

In our consideration of concurrency so far, our aim has been to ensure the integrity of

individual objects in the presence of multiple threads of control. We now need to

consider the impact of concurrency on the contract between a supplier, an object

9Subject to the earlier remarks about re-entrancy.

238 Concurrency

providing services, and a client, an object making use of those services by sending

messages.

Imagine that a client object is given, somehow, the identity of a supplier object

conforming to the type AlarmStore, whose statechart appears in figure 9.11. The

statechart tells us that minderAlarm messages add a minder to the queue and nextAlarm

messages remove one. The client might therefore assume that it would be perfectly

safe to send the message sequence:

 minderAlarm(…)

 minderAlarm(…)

 minderAlarm(…)

 nextAlarm

 nextAlarm

 nextAlarm

It isn’t safe because the client has no idea whether other threads of control are also

interacting with the supplier. The supplier might actually see the following sequence:

 minderAlarm(…)

 minderAlarm(…)

 minderAlarm(…)

 nextAlarm

 nextAlarm [from another client]

 nextAlarm

 nextAlarm [‘wrongState’ exception]

The final nextAlarm message is invalid because the alarm store is empty. If there is

more than one thread interacting with the supplier, it is pointless for any client to try to

reason about the state of the supplier. Reference to the supplier’s statechart won’t help

a bit. The whole notion of ‘programming by contract’ has broken down. In this

example, and this is typical, there is no way in which the client can use the supplier

without being prepared to handle the possible exceptions. It is important to realise that

this is entirely the client’s problem; the supplier is just behaving correctly, according to

the way it was designed.

9.4.1 Exclusive and non-exclusive suppliers

Fortunately, in the vast majority of client–supplier relationships the client can be

confident that it is the only user of the supplier. This confidence has to be based on the

knowledge that the supplier’s identity is not known to anyone other than the client10.

10Practically speaking, the supplier's identity will frequently be known to entities other than the client, such as
object managers, without jeopardising the client's confidence in this matter.

 9.4 Synchronisation specifications 239

The most usual way for the client to gain this knowledge is itself to create the supplier

and not give away the supplier’s identity to anyone. Under these circumstances the

client can reason about the state of the supplier, with reference to its statechart, even if

the system has many threads of control. This is because all access to the supplier by

the client must be from the client’s updaters, which are themselves serialised under the

rules discussed earlier. So within any one updater the supplier must be being accessed

sequentially. Within a single updater it would be perfectly safe to write the first of the

message sequences shown above.

We can usually determine quite simply whether a client has exclusive access to a

supplier by examination of the type view. Consider the relationship between a share

object and its associated ShareChange objects, as shown in figure 9.12. The

ShareChange objects are created by the share as a result of price changes and we have

devised no interface for the share to ‘give away’ their identities. The ShareChange

objects have no other associations and hence no other possible clients. Shares can be

confident that they have exclusive access to ShareChange objects. If there were other

associations we would need to consider their visibilities: if there is more than one

visibility arrow pointing towards the supplier, no client can be sure of exclusive access

unless the associations are constrained to ensure that only one of the conflicting

associations exists at a time. Shares cannot assume exclusive access to sectors

because, although there is only a single association between the types, it is multiple at

the client end; many shares might be simultaneous clients of a sector.

Observers:
exchange

Updaters:
priceAdjust(Number)
priceChange(Number, Date, Time)

Invariants:
movement =

sum share.movement

Share-I

Observers:
price : Number

Updaters:
priceChange(Number, Date, Time)
suspend

Invariants:
optional price

Sector-I
Exchange-I

ShareChange-I

Observers:
price : Number
date : Date
time : Time

[seq]

Mindable-I

Observers:
movement : Number

Updaters:
priceAdjust(Number)
priceChange(Number, Date, Time)
suspend(Share)

Invariants:
movement =

sum sector.movement

Minder-I

Observers:
limit : Number
desc : String

Updaters:
priceCheck

Invariants:
limit >= 0

minded

Figure 9.12 The share minder system

240 Concurrency

When a client has exclusive access to a supplier it is in full control; it knows that,

within a particular operation, any messages it sends to the supplier will be processed in

the order sent. It can also safely assume continuity between successive operations.

Without exclusive access it can make no such assumptions. What, then, is the nature

of the contract between a client and a non-exclusive supplier?

9.4.2 The non-exclusive contract

If the supplier places no constraints on the ordering of messages it receives there can be

no problem and it makes no difference whether they are exclusive or non-exclusive.

The problems arise when the supplier has definite constraints on message order.

The client could rely on detecting and handling the exceptions which will,

inevitably, result from conflict between multiple clients over suppliers with message-

ordering constraints. In most cases this would be unsatisfactory because the client will

want to be blocked until the messages sent can be processed. Our belief is that the

contract between a client and a non-exclusive supplier must allow the client to send

any message defined for the supplier at any time without the supplier raising a

wrongState exception. The supplier may still raise explicit exceptions, as defined by

its statechart. Put simply, a non-exclusive supplier cannot restrict the order of receipt

of its messages. We say an object that guarantees never to raise a wrongState

exception supports the non-exclusive contract.

An object supporting the non-exclusive contract must be able to specify the

conditions under which clients must be prevented from invoking its operations; that is,

the conditions under which it must block clients. Although it is up to the supplier to

protect its integrity by defining blocking rules, it is up to the clients whether or not to

wait if they become blocked; different clients will want different behaviour.

9.4.3 Synchronisation constraints

To allow suppliers to specify their blocking conditions, we allow object types to be

extended, more correctly synchronised, with the addition of synchronisation

constraints. These comprise a list of conditions under which execution of operations is

permitted. The synchronisation constraints are held in a separate type, known as a

synchronising type. A synchronising type may contain only synchronisation

constraints; it may not add properties, associations or invariants, and may not extend its

parent’s statechart.

In figure 9.13 we have introduced a synchronising type, called BlockingAlarmStore,

that synchronises AlarmStore. It specifies a blocking condition for the nextAlarm

message. We call nextAlarm a synchronised message. By including synchronisation

constraints in the type, we have ensured that BlockingAlarmStore can support the non-

exclusive contract. Although we have used the type extension triangle we have placed

the letter S in it to show that this is not a sub-type but a synchronisation relationship.

 9.4 Synchronisation specifications 241

AlarmStore-I

Observers:
size : Integer

Updaters:
minderAlarm(Minder)
nextAlarm : Minder
startAlarmTimer(Minder, TimeInterval)
stopAlarmTimer(Minder)

Invariants:
const size

BlockingAlarmStore-I

Sync:
nextAlarm ⇐ not in Empty

S

Figure 9.13 A synchronising type

The statement:

 nextAlarm ⇐⇐⇐⇐ not in Empty

means that objects of this type are permitted to begin execution of nextAlarm messages

if, and only if, they are not in their Empty state. Any thread sending a nextAlarm

message might become temporarily blocked anyway, because of the mutual exclusion

restrictions, but now we are introducing a further constraint: such a thread will be

unable to proceed with the desired operation until the expression to the right of the

arrow becomes true. We can put a set of messages on the left-hand side if they all have

the same blocking condition. Only one statement per message is allowed.

Since an object providing the non-exclusive contract must not raise wrongState

exceptions, it follows that the set of constraints must be sufficient to ensure this. Every

message which, in the non-synchronising type, might raise a wrongState exception

must have a synchronisation constraint in the synchronising type.

Objects that conform to BlockingAlarmStore do not technically conform to

AlarmStore, so we cannot use the objects conforming to the former in place of objects

conforming to the latter. Synchronising types are not type-conformant with their non-

synchronising parent types. If another client needed an alarm store with a different set

of conditions we could introduce another synchronising type, but any particular alarm

store object can conform only to one synchronising type or the other; we can’t operate

two different sets of rules on the same object.

9.4.4 Synchronisation and conformance

Conceptually, synchronising types should contain no elements other than

synchronisation constraints. However, as a shorthand, we could add the

synchronisation constraints directly to the AlarmStore type, as in figure 9.14.

242 Concurrency

AlarmStore-I

Observers:
size : Integer

Updaters:
minderAlarm(Minder)
nextAlarm : Minder
startAlarmTimer(Minder, TimeInterval)
stopAlarmTimer(Minder)

Invariants:
const size

Sync:
nextAlarm ⇐ not in Empty

Figure 9.14 Shorthand for a synchronising type

This has a serious drawback: we do not allow synchronising types to have sub-

types. This is because we view synchronisation as an issue orthogonal to sub-typing.

Synchronising types are not sub-types of their non-synchronising super-types and

allowing further extension of synchronising types is not helpful. It is difficult to define

useful conformance semantics for synchronised sub-types, as has been shown by a

number of researchers, and as is discussed in depth in [Atkin91]. As you will see later

in this chapter, we have special techniques for meeting the need for polymorphic

collections of synchronised objects.

So if we want to specialise the behaviour of a synchronised object we must do it by

creating a sub-type of the unsynchronised type in the normal manner. We can then re-

link our synchronisation constraints, as defined in the synchronising type, to the new

sub-type, or define more detailed constraints.

9.4.5 Synchronisation expressions

Synchronisation expressions are most frequently related to states but may be any

Boolean expression over the type’s observers and states11. They may not refer to

parameters of the message being synchronised; although the meaning of this is clear, it

is very difficult to implement efficiently.

Since the truth of synchronisation expressions will change over time, we need to

define exactly when they are evaluated. We define all synchronisation expressions for

a type to be evaluated when an object conforming to the type is created and again each

time an updater completes. When an updater completes, threads which were

previously blocked because of synchronisation constraints but which could now

proceed must compete against other threads blocked by the mutual exclusion

constraints for access to the supplier. As with mutual exclusion, we don’t specify the

order in which competing threads will be chosen but we assume the competition to be

fair.

11It is a restriction that the result of synchronisation expressions cannot depend on the state of any other object.
That is, a synchronisation expression cannot refer to an observer that is implemented in terms of properties of
another object.

 9.4 Synchronisation specifications 243

We assume the results of synchronisation expression evaluation are stored,

privately, so that if a synchronised message is received when no updater is in progress

the results can be used to determine whether the sending thread should be blocked.

The synchronisation expressions are not evaluated when messages are received.

9.4.6 The client’s view

BlockingAlarmStore-IAlarmManager-I

Updaters:
run

Alarm-I

Updaters:
showAlarm(Minder)

[1+]
[seq]

Figure 9.15 Alarm manager

Consider the type view shown in figure 9.15. An alarm manager manages a fixed

sequence of alarm stores and passes stored alarms to the alarm itself, as shown by the

statechart in figure 9.16. When the alarm manager sends a nextAlarm message to a

store it will be blocked until the store has an alarm to forward. Other alarms in other

stores will not be processed until the store currently blocking has an alarm. There is no

possibility of a wrongState exception being raised by the blocking alarm store.

9.4.7 Post-conditions

We must also consider how the client of a supplier object providing the non-exclusive

contract should interpret any post-conditions given on the supplier’s statechart.

Since the supplier is not exclusive, the client can never be sure of the supplier’s

state. Hence, if the supplier has many possible transitions for a particular message, the

client cannot know which transition will be taken. It follows, therefore, that the most

the client can assume is that the post-condition of the supplier will be the logical ‘or’ of

the post-conditions of all the possible transitions.

244 Concurrency

9.4.8 Timeouts

We have shown how a supplier can specify blocking conditions, and, in the example

above, we have shown the effect on a client. But, as we discussed earlier, the decision

as to whether or not to wait when blocked should be made by the client. The client

may also wish to specify a limit to the length of time it can be blocked. These things

are done using timeouts.

Whenever a client sends a message it can specify the length of time for which it is

prepared to wait if blocked. If the specified time is exceeded, the client will receive a

timeout exception. For example, the alarm store may decide not to wait more than 500

milliseconds if blocked when sending the nextAlarm message12:

 alarmStore.nextAlarm[500ms]

If the message has parameters, the timeout is specified, inside square brackets, after the

last parameter but before the closing parenthesis.

The statechart for AlarmStore must now be modified to take account of the timeout

exceptions, as in figure 9.17. If the client does not want to wait at all if blocked, it

12The timeout is a value of type TimeInterval. In this example we are specifying the value using a literal, made up
from a number and a unit post-fix. The units of timeouts are:
 ms : milliseconds
 s : seconds
 h : hours
 d : days

Idle Getting

Checking

run / [coll’ = tail blockingAlarmStore] [as’ = first blockingAlarmStore]

/ [m’ = as.nextAlarm] alarm.showAlarm(m)

[#coll = 0]

[#coll > 0] / [as’ = first coll] [coll’ = tail coll]

AlarmManager-I

Variables:
coll : seq of BlockingAlarmStore
as : BlockingAlarmStore
m : Minder

Figure 9.16 Alarm manager statechart

 9.4 Synchronisation specifications 245

specifies a timeout period of 0. This means that a timeout exception will be raised

immediately if the requested operation cannot be started at once.

It is important to realise that a client can be blocked in the following two ways:

• waiting for a synchronisation constraint to become true;

• waiting for another thread to leave a mutually exclusive operation.

The timeout applies to both, not just the wait on a synchronisation constraint.

Therefore, it is quite proper, and sometimes useful, to specify a timeout for an

unsynchronised message (i.e. one with no synchronisation constraint). This will

prevent the client from being blocked indefinitely because another thread is executing a

mutually exclusive operation.

Idle Getting

Checking

run / [coll’ = tail blockingAlarmStore] [as’ = first blockingAlarmStore]

/ [m’ = as.nextAlarm[500ms]] alarm.showAlarm(m)

[#coll = 0]

[#coll > 0] / [as’ = first coll] [coll’ = tail coll]

AlarmManager-I

Variables:
coll : seq of BlockingAlarmStore
as : BlockingAlarmStore
m : Minder

Exceptions:
timeout

timeout

Figure 9.17 Timeouts

9.4.9 The synchronisation invariant

Imagine we have two kinds of alarm store, one called BlockingAlarmStore which, as

before, blocks nextAlarm messages until there is an alarm available, and another, called

FullyBlockingAlarmStore, which in addition blocks minderAlarm messages until there is

space in the queue, rather than raising an exception. We might want our alarm

manager to manage a collection containing both kinds of alarm store, as shown in

figure 9.18.

246 Concurrency

AlarmStore-I

Updaters:
nextAlarm : Minder
minderalarm(Minder)

BlockingAlarmStore-I

Sync:
nextAlarm ⇐ not in Empty

S

FullyBlockingAlarmStore-I

Sync:
nextAlarm ⇐ not in Empty
minderAlarm ⇐ not in Full

AlarmManager-I

Updaters:
run

Alarm-I

Updaters:
showAlarm(Minder)

[seq]
[1+]

Figure 9.18 Attempting to use synchronising types as conformant sub-types

Unfortunately, this doesn’t work because BlockingAlarmStore and

FullyBlockingAlarmStore are not type-conformant with AlarmStore and so cannot be

used polymorphically. It seems unreasonable to prohibit such designs but we need to

ensure that the client’s contract is maintained.

Every synchronising type guarantees, irrespective of what is in its parent’s

statechart, to provide the non-exclusive contract; that is, objects conforming to it

guarantee never to raise the wrongState exception, but they may raise the timeout

exception. To allow type-conformance between synchronising types we introduce the

idea of a synchronisation invariant, written as sync in the invariants section of the

type. A type with this invariant does not contain synchronisation constraints, but

promises to provide the non-exclusive contract anyway. It follows that types

containing the sync invariant must always be abstract if they do not allow all messages

in every state. As with synchronising types, a type with the sync invariant is not a true

sub-type of its super-type, and does not conform to it.

Apart from its promise to clients, a type with the sync invariant behaves much like a

normal type. In particular, it may have sub-types, and these sub-types are conformant

(and must obey the normal conformance rules). Like all other invariants, the sync

invariant is inherited: sub-types must also provide the non-exclusive contract. A type

with the sync invariant must have synchronising sub-types which provide the

synchronisation constraints necessary to guarantee the non-exclusive contract at the

leaves of its sub-type structure.

We can now produce a design with varying sub-types of AlarmStore by introducing

a new type, called SyncAlarmStore, that has a sync invariant, as shown in figure 9.19.

Notice that there is no S in the extension triangle between SyncAlarmStore and its sub-

types: this is now true type-conformance.

To complete the story we show a revised statechart for the alarm manager in figure

9.20.

 9.4 Synchronisation specifications 247

SyncAlarmStore-I

Invariants:
sync

BlockingAlarmStore-I

Sync:
nextAlarm ⇐ not in Empty

AlarmManager-I

Updaters:
run

Alarm-I

Updaters:
showAlarm(Minder)

[1+]
[seq]

AlarmStore-I

Updaters:
nextAlarm : Minder
minderAlarm(Minder)

S

FullyBlockingAlarmStore-I

Sync:
nextAlarm ⇐ not in Empty
minderAlarm ⇐ not in Full

Figure 9.19 The sync invariant

Idle Getting

Checking

run / [coll’ = tail syncAlarmStore] [as’ = first syncAlarmStore]

/ [m’ = as.nextAlarm[500ms]] alarm.showAlarm(m)

[#coll = 0]

[#coll > 0] / [as’ = first coll] [coll’ = tail coll]

AlarmManager-I

Variables:
coll : seq of SyncAlarmStore
as : SyncAlarmStore
m : Minder

Exceptions:
timeout

timeout

Figure 9.20 Revised alarm manager statechart

We can use the same technique to achieve polymorphism between objects with

different behaviour, not just different blocking rules. The model shown in figure 9.21

contains a sub-type of AlarmStore, called SafeAlarmStore, which extends the behaviour

of AlarmStore by defining a response to nextAlarm messages in the Empty state.

248 Concurrency

BlockingAlarmStore-I

Sync:
nextAlarm ⇐ not in Empty

AlarmManager-I

Updaters:
run

Alarm-I

Updaters:
showAlarm(Minder)

[1+]
[seq]

AlarmStore-I

Updaters:
nextAlarm : Minder
minderAlarm(Minder)

Invariants:
sync

SafeAlarmStore-I

Figure 9.21 Extending behaviour

The extended statechart for SafeAlarmStore appears as figure 9.22, which you

should compare with figure 9.10. When a SafeAlarmStore receives a nextAlarm

message in the Empty state it returns a new, dummy Minder13. Notice how the existing

post-conditions of nextAlarm have been moved from the textual part to the body of the

statechart.

SafeAlarmStore-I

Empty OK Full

Updaters:
nextAlarm : Minder

nextAlarm [#queue > 1] /
[nextAlarm’ = first queue] [queue’ = tail queue]

nextAlarm [#queue = 1] /
[nextAlarm’ = first queue]
[queue’ = tail queue]

nextAlarm / [nextAlarm’ = first queue]
[queue’ = tail queue]

nextAlarm / [nextAlarm’ = new Minder(0, ‘dummy’, nil)]

Figure 9.22 Safe alarm store statechart

13We have bent the rules slightly to produce this example. We have specified the third creation parameter of the
dummy Minder, the one that represents the object to be minded, as nil, but earlier models indicate that this
association is not optional.

 9.5 Active objects 249

Since the SafeAlarmStore has defined behaviour for nextAlarm in the Empty state, it

can guarantee the non-exclusive contract without needing any synchronisation

constraints, and hence it needs no synchronising type.

However, we must consider the impact of this on AlarmManager objects. Since they

have a non-exclusive contract with AlarmStores, they cannot reason about AlarmStore

behaviour by examining statecharts. When an AlarmManager sends a nextAlarm

message the only thing it can be certain of is that it will receive a Minder; there is no

guarantee that the Minder will ever have been on the queue – as we can see,

SafeAlarmStores may return a brand new Minder.

9.5 Active objects

How do threads come into existence? Most frequently, their origin is buried within the

run-time or operating system and our software experiences them as messages sent by

the run-time or operating system. In the simplest situation we can think of the software

system as a program which, when executed, is given a single thread of control that

commences its execution at some defined entry point. This kind of situation is usually

the first we encounter when we are learning about programming. It is also still

commonplace, particularly in large-system data-processing, where the impact of

concurrency on application programmers is limited to being able to run several

independent, single-threaded programs at once. Single-threaded systems of this kind

are becoming less common though, and are being replaced by systems integrating a

variety of asynchronous information sources, such as data communication links, and

featuring event-driven graphical user-interfaces. In today’s software world there is

much less distinction between data-processing and traditional real-time applications.

Even if our software never creates new threads of control we may need to design it

to manage several. In graphical user-interfaces, each window is often associated with a

thread, created by the environment when the window is created. User events cause

messages to be sent to our software, executing in the window’s thread. We often refer

to this kind of activation as a call-back. If each window has its own thread, the

processing of events associated with that window are inherently serialised, but our

software may be dealing with events coming from several windows and these can

certainly overlap. Another model used by graphical user-interfaces is to give each

event its own thread – now we must deal with overlapping events from the same

window. There may be constraints on the way we handle threads originating from

outside the software; frequently, we are not permitted to block them or use them to

call-back into the operating system. We may need to detect events and queue them for

later execution. This requires the ability to create new threads of control in the

software.

Sometimes we need to create new threads of control to prevent our software from

stopping. If we had to manage several communication lines, each controlled by a

separate object whose interface for reading was a blocking message, we would need a

separate thread for each line. As soon as a thread sends a message to the line controller

250 Concurrency

to read data it will be blocked until data is available. If we had only one thread, the

entire software system would stop execution the first time we asked a line controller

for data. The traditional solution to this problem, polling, is inelegant and inflexible.

9.5.1 Active types

An object which initiates a thread is called an active object; we introduced this idea

earlier in the chapter. Active objects are objects that conform to one or more active

types. The design of active types includes specification of the execution pattern of the

thread, in a way that we will describe shortly. Each time an active object is created, a

new thread is also created to execute the defined execution pattern.

Although the thread of an active object ‘belongs’ to the object it has no privileged

access to the internals of the object. It may use only the defined message interface of

the object, just like any other client. It is free to interact with associated objects in any

way it wishes, obtaining their identities by invoking the relevant observer operations.

9.5.2 Execution patterns

The execution pattern of an active object’s thread is shown by a concurrent state

machine, consisting only of states with unnamed transitions, drawn at the outermost

level of the statechart of the active type. This machine is distinguished as active by

having a white, rather than black, circle at the tail of the initial state arrow (or arrows,

if they are guarded).

Each active object can have only one thread. An active type can define only one

active state machine. We make this rule because we don’t want to have to define the

sequence of activation of multiple threads. A collection of objects each with a single

thread is always an alternative to a single object with multiple threads.

The active parts of statecharts are inherited by sub-types in the usual way, but they

may not be refined. If the sub-type wishes to refine the super-type active part, or if it

has more than one active super-type, it must define its own active part which

completely replaces those of the super-type(s).

If you wish to specify a priority for the active thread, place it inside the circle at the

tail of the initial state arrow.

In our consideration of the share minder system we have referred many times to

examples where a share object receives a priceChange message. We will now look at

an example of how these messages might be sent. We propose the existence of a

message feed object which uses data from a communication line to instantiate message

objects. Each message object knows the identity of the affected share and its new

price. The message feed queues these incoming messages until they are read by a

client, using the nextMessage updater. The messages are read by a price feed object,

which knows how to use them to update shares. Fragments of the type view of this

system are shown in figure 9.23.

 9.5 Active objects 251

PriceFeed-I MessageFeed-I

Updaters:
nextMessage : Message

Sync:
nextMessage ⇐ “some guard”

Message-I

Observers:
newPrice : Number

Share-I

Creation:
(MessageFeed)

Figure 9.23 Price feed

We will make PriceFeed an active type. The thread must repeatedly read a message

from the message feed and pass details of it to the share. Since the nextMessage

updater has a blocking constraint, the thread will be blocked if no message is available.

The execution pattern of the thread is a loop, as we can see clearly from the statechart

in figure 9.24.

The active state machine has two ‘states’ but these are not the stable states of a

normal state machine but unstable intermediaries between two message-sends. The

stable state of this machine is when the nextMessage message blocks. The initial state

arrow of the active state machine is unrelated to object creation; the post-conditions for

creation shown in the textual part apply not to the initial state arrow of the active

machine but to an implicit creation arrow on the omitted ‘proper’ machine.

The syntax of the transitions is similar to that for unnamed transitions in normal

state machines. The messages on the transition are sent in the order shown. Taking a

transition in the active part does not, in itself, cause the object to become secured or

locked in any way, but if the transitions in the active part invoke observers or updaters

on self the normal mutual exclusion rules (and possible blocking) apply. The active

part behaves exactly like an external client.

PriceFeed-I

Get
Message

Process
Message

Variables:
m : Message

Creation:
(mf : MessageFeed) / [messageFeed’ = mf]

/ m := messageFeed.nextMessage

/ m.share.priceChange(m.newPrice)

Figure 9.24 Active objects

252 Concurrency

It is important that we define the exact moment when the thread is created; it cannot

be before the creation operation has established its post-conditions because, in the

example above, the message feed association is not established until then. The thread

is created after completion of the secured section of the creation operation but before

commencement of its relaxed section (if it has one).

9.5.3 Thread synchronisation

We might want the thread of our price feed to wait until it is told by another object to

start. We can achieve this very simply by making the thread send a synchronised

message as its first action, as shown in figure 9.25. The thread will be blocked on the

send of the active message until another object sends start.

PriceFeed-I MessageFeed-I

Updaters:
nextMessage : Message

Sync:
nextMessage ⇐ “some guard”

Creation:
(MessageFeed)

Observers:
active : Boolean

Updaters:
start
stop

Invariants:
active = true

Sync:
active ⇐ in Running

PriceFeed-I

Get
Message

Process
Message

Variables:
m : Message

Creation:
(mf : MessageFeed) / [messageFeed’ = mf]

/ m := messageFeed.nextMessage

/ m.share.priceChange(m.newPrice)

Waiting

Running

start

stop

/ active

Figure 9.25 Thread synchronisation

9.5.4 Finalisation

Figure 9.25 also shows a finalisation state for the price feed. We have to consider what

this means for active objects. When an object enters its finalisation state it is

unreachable, that is, it has lost all its associations with other objects. With or without

explicit finalisation, objects normally become eligible for destruction after they

 9.6 Summary 253

become unreachable; the exact moment of destruction depends on the implementation

language. An active object does not become eligible for destruction until its thread

stops execution, if it has not already done so. The thread stops execution when its

owning object is unreachable and when it (the thread) next enters a state in the active

state machine, such as GetMessage or ProcessMessage in the example above. We do

not want to stop execution of the thread at any other time because it could compromise

the integrity of any objects whose operations are in the thread’s message-sending

chain.

Applying this rule to the example above, we notice that the thread might stop

execution in the ProcessMessage state, meaning that a message will be lost: it will

have already been read from the message feed but not yet applied to the share. We

could fix this by removing the ProcessMessage state and showing all the message

sends in the same transition.

9.6 Summary

• A concurrent system is one where the software must begin processing a stimulus

before having finished processing a previous one.

• A major issue in the design of concurrent systems is locality of threads of

control: the extent to which threads are aligned with object boundaries.

• Concurrency causes problems when two or more threads of control

simultaneously execute the same code. The main technique for dealing with this

is serialisation using critical sections.

• We divide the operations of an object into observers and updaters. Observers do

not change the state of the object (or any part of the system); updaters may

change the state of the object.

• The serialisation of observers and updaters is based on the many readers, single

writer principle. Updaters must be mutually exclusive in respect of each other

and of observers. Observers need not be mutually exclusive.

• These rules are loosened in three ways. First, updaters may call local observers;

second, we divide updaters into secured and relaxed sections; third, updaters

may call local updaters when secured provided special restrictions are followed.

• The secured section of an updater must establish the integrity of the object and

the system as a whole. The relaxed section may include code that causes the

object to be re-entered in the same thread of control.

• Orthogonal state machines partition updaters into groups. An updater in one

group may, subject to some restrictions, directly invoke an updater in another,

even in its secured section.

• The contract between client and supplier objects is greatly affected by the

presence of multiple clients in a concurrent system. The contract between a

supplier and a single client is said to be exclusive; the contract between a supplier

and multiple clients is said to be non-exclusive.

254 Concurrency

• When there is an exclusive contract the client can reason about the behaviour of

the supplier by examining the supplier’s statechart.

• When there is a non-exclusive contract the client cannot use statecharts to reason

about the behaviour of the supplier, and so there is a risk of inadvertently causing

wrongState exceptions. In fact, we require a supplier supporting the non-

exclusive contract to guarantee never to raise wrongState exceptions by

specifying appropriate blocking controls.

• Blocking controls are normally defined in special synchronising types.

• A client can use timeouts to decide how long to wait if blocked.

• The sync invariant can be used to produce conformant sub-types that support the

non-exclusive contract.

• An active object is one that initiates a thread of control. The behaviour of the

thread is defined in a special part of the type’s statechart.

• Active objects cannot initiate more than one thread of control.

9.7 Bibliographic notes

The book by Atkinson [Atkin91] provides an excellent introduction to the issues

involved in building concurrent object-oriented systems, and explains clearly why

synchronisation and sub-typing must be kept separate.

9.8 References

[Agha86] G. Agha. A Model of Concurrent Computation in Distributed Systems, MIT Press,

Cambridge, Massachusetts, 1986.

[Ameri87] P. America. POOL-T: A parallel object-oriented language. Object-Oriented Concurrent

Programming, A. Yonezawa and M. Tokoro (eds.), MIT Press, Cambridge, Massachusetts, 1987.

[Atkin91] C. Atkinson. Object-Oriented Reuse, Concurrency and Distribution. ACM Press, New

York, 1991.

[Black86] A. Black, N. Hutchinson, E. Jul and H. Levy. Object structure in the Emerald system.

OOPSLA ‘86 Conference Proceedings, 78–86, ACM Press, New York, 1986.

[Booch91] G. Booch. Object-Oriented Design With Applications, Benjamin/Cummings, Redwood City,

California, 1991.

[ESA89] HOOD Reference Manual, European Space Agency, Noordwijk, The Netherlands, 1989.

[Meyer93] B. Meyer. Systematic Concurrent Object-Oriented Programming, Technical Report TR-EI-

37/SC, Interactive Software Engineering, Santa Barbara, California, 1993.

Part Four

System architecture

 259

CHAPTER 10

Relationships between models

10.1 Why three models?

We have introduced three different ways of modelling systems, one aimed at modelling
situations in the world and two aimed at modelling software. Most object-oriented
development methods implicitly acknowledge only one of these modelling
perspectives. Are we over-complicating things? We anticipate being accused of it, but
we have found that being absolutely clear about which of these three modelling
perspectives is being used invariably helps us to understand systems better, even when
using notations and methods other than those introduced in this book.

It has been said many times that object-oriented methods permit the software
developer to ‘model the real world’. The more we have explored this idea, the more
potentially misleading we have found it. Firstly, the very idea of an objective ‘real
world’ is highly dubious on philosophical grounds. This book is not the place to
discuss metaphysics and the nature of reality; suffice it to say that we do not subscribe
to the kind of naïve realism implicit in the idea of ‘modelling the real world’. We
believe reality to be a social construction, and the activity of building software to be a
social activity which necessarily alters the reality it attempts to model. This is
particularly true in the case of large organisations, where the introduction of software
can fundamentally alter the nature of the organisation. Of course, it is possible to
model certain aspects of reality – indeed, Part 2 of this book is about doing exactly that
– but it is vitally important to be clear about the purpose and limitations of such
modelling.

Secondly, whatever the nature of reality, we do not find it very helpful to describe it
in terms of message-passing or of operations on individual objects. Real events can be
detected by many observers at once; they are not sent from point to point. Message-
passing and operation invocation are appropriate constructs for describing software
execution, but not normally for describing what happens in the world, because they
tend to over-specify the order of the consequences of events. Some authors would
claim that this means that we should introduce concurrency into our models of the
world. In a sense this is exactly what we have done in the essential and specification

260 Relationships between models

models, by allowing broadcast events with instantaneous responses everywhere. But
there is a huge difference between this potentially infinite concurrency and the
techniques used in the implementation model to control the interactions between a
finite number of execution threads acting at a limited speed. The essential and
specification models assume infinite processing power, whereas concurrency is
introduced in the implementation model precisely because we only have limited actual
processing power.

Thirdly, we find it very helpful to be able to describe software in abstract terms, as
in the specification model, without needing to consider implementation issues such as
concurrency and message-sequencing. Most of the history of computer science has
been the search for abstraction, that is, for ways of saying what is needed while
omitting what is superfluous. Message-sequencing is superfluous for specifying the
observable behaviour of software, and only becomes relevant when we need to
describe how the software implementation is mapped onto processors.

We have spent several chapters identifying and describing the three perspectives,
and giving precise techniques for building models in each perspective. This chapter
considers the relationships between them in more detail.

10.2 Analysis, specification, design and programming

Terminology is a problem. In the software world we often come across the words
analysis, design, specification, programming, requirements and a plethora of other
terms whose meaning the software developer is expected to understand.
Unfortunately, most of these terms have meanings vastly removed from their normal
English usage, only defined by small communities, and often different from one
community to another. Indeed, they frequently only acquire any real meaning within
the context of a single software project. Books setting out methods often attempt to
provide a definition at least for analysis and design; unfortunately they usually
disagree. For some, the words are simply management tools, whereas for others they
carry precise technical distinctions. In short, the terminology of software development
methods is in a mess.

To help us through this predicament, we propose a set of definitions which seem to
return the words to something near their dictionary meanings, as follows:

• Analysis is discovering and describing those aspects of a software development
project about which there is no choice, that is, which the project is already
committed to.

• Design is creating and describing those aspects of a software development
project about which a choice exists, that is, which a project is not yet committed
to.

• Specification is creating an abstract description of the observable behaviour of a
software system.

 10.2 Analysis, specification, design and programming 261

• Programming is creating an executable description of the implementation of a
software system.

• Requirements are properties which the system must possess in order to
succeed. These may be divided into functional requirements – a statement
of the desired stimulus–response behaviour – and non-functional

requirements, such as constraints on speed, space, platform, price, human
factors, etc.

Note that the distinction between analysis and design depends only on whether a choice
exists. This is not a difference of notation, or of technique. Also, analysis and design
are applicable to things other than software, even when the goal is software
development. Software is always an element of a wider system, at least part of which
must itself be designed. The distinctions suggested above can be applied regardless of
whether the choices concern software structures or something else.

It sometimes takes great clarity of thought to determine where a choice actually does
exist. One of the most powerful experiences for the skilled analyst is to sort out the
core of a problem from the implementation-oriented terms often used to describe it by
unskilled people. Most people do not have the language of abstract set theory and
logic at their fingertips, and are therefore compelled to describe a situation in terms
which over-commit in various ways, often bound up with the way in which a problem
is currently solved.

Essential modelling can be done in order to assist with analysis, or in order to create
a design, or both. So can specification, or even programming. Note also that some of
these terms are not mutually exclusive. For example, analysis might consist of the
discovery of a set of requirements, which may or may not constitute or include a
specification. Design may be needed in order to complete the specification.
Requirements may be products of analysis (a priori requirements) or design
(requirements chosen as part of the project).

With these definitions, it does not make sense to associate specific techniques with
analysis or design, nor to manage a project on the basis of techniques. We discuss
project management further in chapter 13.

It would be incorrect to say that the purpose of an essential model is analysis,
because it may also be used to design. Nevertheless, essential modelling is often used
for analysis, especially in cases where an existing situation needs to be described as a
pre-requisite to software specification. We have ourselves used essential modelling in
enterprises including health care, banking and insurance to formalise what goes on in
the enterprise prior to specifying any software. The usual purpose of such an analysis
is to model those aspects of the enterprise which are candidates for automation, as a
precursor to deciding about software system scope and boundary. When software
scope and boundary have already been decided (i.e. there is no choice about them),
essential modelling may be unnecessary, and analysis consists of software
specification. However, in our experience the situation is often ambiguous and
politically charged, with confusion about what the choices are. The use of precise,
abstract notations can help greatly in charged situations, because they can help to

262 Relationships between models

distinguish the real choices from the imaginary ones, and indeed to determine which
activities are truly analysis and which are truly design.

10.3 Seamlessness

Seamlessness is another claim of object-oriented methods, closely tied up with
modelling the real world. Obviously we do not subscribe to the most elementary
interpretation of seamlessness, which would imply that building software simply
consists of building a model of the world and automatically generating code from it.
On the other hand, we firmly believe that there can be – and indeed should be – a
strong correspondence between the structure of the software and the structure of its
environment. With such a correspondence, when the world changes it should be
reasonably straightforward to find the part of the software which needs to be changed
in response. This correspondence is what we call ‘seamlessness’. The fundamental
relationship we are seeking is that objects in the concept domains – the parts of the
software that mimic the world – should have counterparts in the software’s
environment. Indeed, as we discuss further in chapter 11, this is how the concept
domains are defined.

Assuming that in a software development project it is found necessary to build all
three models – essential, specification and implementation – we find that the main
correspondence between all three is in the type views for the concept domains. A
concept domain type view for the specification model is normally a subset of that for
the essential model. Software scope and boundary in a concept domain can be
systematically decided by considering which aspects of an essential model are to be
included in the specification model. The type view also corresponds closely between
specification and implementation models. The correspondence is not exact because
properties and event behaviour are implemented by updaters and observers with
(possibly concurrent) message access. Nevertheless, a basic structure of object types
can be found in all three modelling perspectives, and this we consider to be the basis of
seamless development. It is certainly open to tool support.

This similarity of type views means that each type name can have three different
interpretations during the development process. In fact, when viewpoints are
introduced in chapter 12, there may be many more interpretations for each type name.
In this book we have used suffixes, such as -S and -I, to distinguish between the
different interpretations.

State diagrams do not, in general, correspond between essential and specification
models. There may be little similarity between an essential model statechart, which
describes the possible state changes to objects in a situation, and the specification
model statechart for the corresponding type, which describes the responses of its
software instances to events. The most obvious reason for this difference is that
specification model statecharts show how events are generated by software, whereas
essential model statecharts just show event sequencing. A further reason for the
difference is the possibility of errors occurring in the process of communicating events

 10.4 Scoping essential models 263

between the environment and the software. The difference also partially results from
our definition of sub-typing in the specification model, which allows objects of a sub-
type to substitute as event receivers for objects of a super-type, because we wish to be
able to assemble software from components. This is not an issue for situations, which
we are rarely able to assemble from components.

There are systematic correspondences between statecharts in the specification and
implementation models, but the correspondence is not direct, because of the change
from event semantics to message semantics, and the need to introduce implementation
domains such as persistence and distribution.

10.4 Scoping essential models

We want to discuss how to build an essential model with the correct scope, that is, one
which describes everything we want to describe, and nothing that we don’t want to
describe. To illustrate some of the issues we will build an essential model of part of
the operation of a self-service petrol station. We assume that our ultimate goal is to
design some software which will control the pumps and payments. We will also
assume that this station is one where dispensing of petrol occurs before payment.

We know that the main activity that occurs in petrol stations is people arriving in
cars, serving themselves with petrol, paying and leaving. The people who serve
themselves with petrol are agents, in the terminology of chapter 6; we will call them
Customers. We start very simply, by considering the relationship between the
customers and the petrol station, and the events that occur during this relationship.
Figure 10.1 is our first type view, showing that every Customer object is associated
with a Pump object, and every Pump with a PetrolStation. We assume that the
association between Customer objects and Pump objects is created when the customer
chooses the pump, and destroyed when the customer eventually leaves.

Let’s create an event scenario for a typical interaction between a Customer object
called c, a PetrolStation object, and one of its Pump objects called p.

gunRemove(p)
motorOn(p)
squeezeTrigger(p)
update(p, litres, price)
.
releaseTrigger(p)
motorOff(p)
gunReplace(p)
pay(c)
receiptRequest(c)
receiptPrint(c)
customerLeave(c)

264 Relationships between models

One of the choices we have made when building this scenario is whether the parameter
for events such as squeezeTrigger is the Pump or the Customer. Theoretically, it is an
arbitrary choice, because while the Customer exists it is always associated with the
same Pump. However, it seems more natural to give the Pump as a parameter.

PetrolStation

Pump Customer

[seq]

Figure 10.1 Simple essential model type view for a petrol station

This scenario is an example. Several other scenarios could be played out over these
event types while a customer is in a petrol station. For example, the squeezeTrigger
and motorOn events might be reversed.

Now let’s try to create statecharts for the types Pump and Customer which
generalise the various scenarios that we are interested in. Figure 10.2 is a statechart for
Pump, defining the possible sequences of events. The left-hand statechart unit
constrains the physical relationship between gunRemove, gunReplace, squeezeTrigger
and releaseTrigger events; the central unit shows how motorOn and motorOff are
constrained with respect to gunRemove and gunReplace; and the right-hand unit shows
how update cannot occur until squeezeTrigger happens after motorOn.

Figure 10.3 shows a statechart for Customer showing dispensing and payment.
Observe that this statechart does not actually show all the possible sequences of events
for a person entering a petrol station; it shows the expected behaviour of a customer
under normal circumstances. However, an errant ‘customer’ might leave without
paying; pay for somebody else’s petrol; pay the wrong amount; or even remove the
dispensing gun, wedge the trigger so that petrol starts pumping out all over the
forecourt, and drive off. The only real limitation on the possible scenarios results from
the physical properties of the situation. For example, the gun cannot be replaced unless
it is removed. On the other hand, the statechart for the pump does seem to describe the
set of physically possible scenarios for a pump, as long as it is working correctly.

We seem to have found the following two different approaches to building this
essential model:

• describing all physically possible sequences of events;
• describing typical behaviour.

 10.4 Scoping essential models 265

Pump

Gun
In

gunRemove

Released

squeezeTrigger

Squeezed

Events:
gunRemove(Pump)
squeezeTrigger(Pump)
releaseTrigger(Pump)
gunReplace(Pump)

gunReplace

releaseTrigger

Not
Ready

Ready

Dispensing

motorOn

squeezeTrigger

update

motorOff
Idle

motorOn

Shutting
Down gunReplace

On

motorOff

Starting
Up

gunRemove

Events:
gunRemove(Pump)
gunReplace(Pump)
motorOn(Pump)
motorOff(Pump)

Events:
squeezeTrigger(Pump)
releaseTrigger(Pump)
motorOn(Pump)
motorOff(Pump)
update(Pump, Number, Currency)

Allow:
squeezeTrigger
releaseTrigger

gunReplace

Running

releaseTrigger

Figure 10.2 Statechart for Pump

Customer

Starting
gunRemove

Dispensing
gunReplace

Unpaid

Paid

pay

NotRequested Requested

receiptRequest

receiptPrint

customerLeave

Events:
gunRemove(p: Pump [p = pump])
gunReplace(p: Pump [p = pump])
pay(Customer)
receiptRequest(Customer)
receiptPrint(Customer)
customerLeave(Customer)

Figure 10.3 Statechart for Customer

266 Relationships between models

Figure 10.2 is in the first category, whereas figure 10.3 is in the second. This
inconsistency needs resolving.

Could we create a statechart for Customer which defines all physically possible
behaviours taken from the set of events in figure 10.3? The difficulty with this is that if
a person behaves sufficiently badly, they can no longer be reasonably thought of as a
customer; worse, several malevolent customers could collude with corrupt petrol
station attendants to subvert the system completely. We will end up with an unhelpful
statechart in which almost anything is possible at any time.

We need a way to think about the problem so that we can model all possible
situations without going into this kind of unnecessary detail. We have not made much
headway with the customer. What might we use instead? We may note that all that is
really desired from the petrol station is that it:

• dispenses petrol from pumps, and
• receives and records payments for the petrol that has been taken.

Who actually does the dispensing and paying is irrelevant. However, petrol may be
taken and not paid for, or only partially paid for, and these situations should be
modelled.

We invent a more abstract concept, the transaction, representing an obligation to
pay. A Transaction object comes into existence the moment some petrol is dispensed,
the obligation is discharged when payment is received, and the transaction is deleted at
a later time when it is no longer needed for accounting and reporting purposes.

PetrolStation

Pump Transaction

volume: Number
cost: Currency

Figure 10.4 Revised essential model type view with transactions

Figure 10.4 is our revised type view, in which Customer has been replaced by
Transaction. The proposed statechart for Transaction is shown in figure 10.5. Here we
handle the possible misbehaviour of customers by introducing a new event: terminate.
This is similar to the gunReplace event, but is initiated by the station attendant to stop
delivery. This event would occur, for example, if the attendant recognised the
customer to be a known bad payer, or if petrol were pumping out over the forecourt. In
any case, if the customer leaves without paying, the transaction simply remains unpaid.

 10.4 Scoping essential models 267

We should also express the fact that only one Transaction object in the Dispensing
state may be associated with a given Pump. This can be done by enhancing the type
view, as shown in figure 10.6.

Transaction

gunReplace

Unpaid

Done

pay NotRequested

Requested

receipt
Requestreceipt

Print

delete

terminate

Events:
update(p: Pump, vol: Number, pri: Currency [p=pump])
gunReplace(p: Pump [p = pump])
terminate(p: Pump [p = pump])
pay(Transaction)
receiptRequest(Transaction)
receiptPrint(Transaction)
delete(Transaction)

update(vol, pri) /
[volume’ = vol]
[cost’ = pri]

Terminated

Dispensing

Normal

Figure 10.5 Statechart for Transaction

PetrolStation

Pump Transaction

Dispensing Done

[{ t: Pump::transaction | t in Dispensing }]

volume: Number
cost: Currency

Figure 10.6 Showing only one dispensing transaction

268 Relationships between models

We should also enhance the Pump statechart to show the terminate event as in
figure 10.7, which also shows how new Transaction objects are created when the motor
is switched on.

The statechart in figure 10.5 describes the delivery of petrol and payment, as long as
there is no need to model the individual customers for other purposes, for example
account-holding1. It is sufficiently abstract for the physical details of errant customer
behaviour not to matter, although it does permit petrol dispensing to be terminated and
transactions to remain unpaid.

The issue we have been dealing with here is scoping of essential models. Whenever
we create an essential model, we have the following two competing concerns:

• We want to describe all possible behaviours, both desired and undesired,
otherwise our essential model is incomplete.

• We do not want to describe irrelevant behaviour.

The choices we make about types and events are governed by balancing these
concerns.

Pump

Gun
In

gunRemove

Released

squeezeTrigger

Squeezed

Events:
gunRemove(Pump)
squeezeTrigger(Pump)
releaseTrigger(Pump)
gunReplace(Pump)

gunReplace

releaseTrigger

Idle

motorOn

Shutting
Down

gunReplace

On

motorOff

Starting
Up

gunRemove

Events:
gunRemove(Pump)
gunReplace(Pump)
motorOn(Pump) /

[new Transaction ∈ transaction’]
terminate(Pump)
motorOff(Pump)

gunReplace

terminate

Not
Ready

Ready

Dispensing

motorOn

squeezeTrigger

update

motorOff

Events:
squeezeTrigger(Pump)
releaseTrigger(Pump)
motorOn(Pump)
motorOff(Pump)
update(Pump, Number, Currency)

Allow:
squeezeTrigger
releaseTrigger

Running

releaseTrigger

Figure 10.7 Pump statechart with terminate event

1If we did wish to model account-holding, we would introduce a new type of AccountHolder, with which
Transactions might be associated.

 10.5 The software boundary 269

10.5 The software boundary

At some point in a software development the boundary between the software system
and its environment must be designed. In some cases this boundary is implicit in the
situation itself; in others choosing what is to be automated is itself an act of design.

If the software boundary is implicit in the situation itself, essential modelling may
not be very helpful, because the essential model would express the same behaviour as
the specification model without specifying which events are software-generated.
However, when the software boundary is to be designed, an essential model provides a
systematic way of designing it.

Given an essential model which describes those aspects of a situation which are
candidates for automation, the following questions can be asked:

1. Which types are to be included in the specification model?
 If the stimulus–response behaviour of the software depends in any way on the

state of any instances of a type, then it should be included; otherwise it should be
excluded.

2. Which associations are to be included?
 Normally all the associations between included types will be included.

Sometimes structure in the essential model can be omitted from the specification
model if the structure is not needed to support any aspect of its behaviour.

3. For each event, is it to be detected, generated or ignored by the software?
 Each event should be considered carefully. If it is to be detected or generated by

the software, a way of detecting or generating it must be designed. The
appropriate object identity or value must be established for each event parameter.
Sometimes an event may be split into a set of differently named events
depending on parameter values. Sometimes, the occurrence of an essential
model event may be inferred from other events, rather than detected directly.

When designing the boundary between software and its environment, the developer
must consider carefully the possibility of occurrences which ‘cannot happen’ from an
essential modelling point of view. Events which from an essential modelling
perspective ‘just happen’ must be input to the software, either by means of direct
devices or by the intervention of an operator or user. Either way, something may go
wrong, and the software must be specified to prevent, or to detect and recover from,
such eventualities. Very often part of the purpose of a software system is to validate
events, that is, to establish whether they are allowed to happen or not.

It is illustrative to apply these questions to the simple essential model we have
developed for dispensing petrol, consisting of the type view given in figure 10.6, and
the statecharts given in figures 10.5 and 10.7. The specification model will definitely
need to contain the types PetrolStation, Pump and Transaction in order to manage the
operation of the pumps and payments; the associations will remain as shown. What
about the events mentioned in the statecharts? The following table shows how we
might think about these.

270 Relationships between models

gunRemove(p: Pump) Detected, using a microswitch in the gun

holster. In response, the software signals the
attendant to switch the pump on

squeezeTrigger(p: Pump) Ignored. The only thing that makes a
difference is whether petrol is actually
dispensed. We assume that a meter in the
petrol line issues an event after each 1/100th
of a litre of petrol is dispensed. This will be
detected by the software. A new transaction
will be created on the first such event after
the pump has been enabled

motorOn(p: Pump) Generated, in response to an action of the
attendant

update(p: Pump, litres: Number,
price: Currency)

Generated, in response to metering events

releaseTrigger(p: Pump) Ignored. The software is not interested in
why petrol delivery has stopped

gunReplace(p: Pump) Detected
motorOff(p: Pump) Generated, in response to gunReplace or

terminate
terminate(p: Pump) Detected: the attendant has hit the terminate

button
pay(t: Transaction) Detected
receiptRequest(t: Transaction) Detected
receiptPrint(t: Transaction) Generated, in response to receiptRequest
delete(t: Transaction) We haven’t yet decided how transactions are

finally deleted; this depends on the details of
the required reporting and accounting

As another example, figure 10.8 is the type view for an exceedingly simplified
essential model of a high-street bank. In this essential model there are, among other
things, an event withdraw(Account, Currency) and a statechart (left as a simple exercise
for the reader) which tells us that this event can only occur when the withdrawal does
not take the account overdrawn.

Account

number : Number
name : String
balance : Currency

Bank

Figure 10.8 Simple bank essential model type view

 10.5 The software boundary 271

In the specification model, we must establish a mechanism for communicating this
event and its consequences between the software and its environment. One such
mechanism is an Automatic Teller Machine (ATM). With an ATM, the customer
inserts a card and punches a PIN in order to validate his or her identity; withdrawal of
money is allowed after successful validation.

The type view for the specification model is shown in figure 10.9. Here the bank’s
ATMs are shown in the model, each with an optional association established after a
successful PIN validation. Detected events for the specification model are as follows:

insertCard(ATM, Number) The second parameter is the account
number on the card’s magnetic stripe.

validate(ATM, 4Digit) The customer has typed the four-digit
number.

requestWithdraw(ATM, Currency) The customer has requested a withdrawal
of money.

Generated events would include:

ejectCard(ATM) The card is given back.
refuse(ATM) The withdrawal is refused. Or else:
withdraw(Account, Currency) The withdrawal has been authorised.

This is accompanied by:
dispense(ATM, Currency) The money is dispensed.

Account-S

number : Number
name : String
balance : Currency
PIN : 4Digits

Bank-S

ATM-S

?

validatedAccount

Figure 10.9 Specification model for bank with ATM

We can use this familiar example to underline several points as follows:

1. The essential model allows us to describe the operation of the bank account quite
independently of the devices used to implement it. Holding money for

272 Relationships between models

withdrawal is more ‘essential’ to the bank account than the particular behaviour
of the ATM, or indeed any other present or future device for implementing
withdrawal.

2. On the other hand we could choose to include the description of the ATM within
the essential model; in fact it might be appropriate to do so.

3. The identity of the account must be communicated and validated across the
software boundary. It is always necessary to do this, although schemes differ for
different circumstances. Note that the identities of the ATM and bank are
validated by the physical properties of the situation itself, and that bank debit
cards are an attempt to apply the same principle to validating the identities of
people. However, it is a lot easier to steal debit cards than working ATMs or
banks (although an enterprising criminal might be able to impersonate an ATM
on an electronic communications link).

4. The withdraw event is generated by the specification model. Frequently, an event
in an essential model translates into an interaction in a specification model,
started by a request of some kind and finishing either with the generation of the
requested event or a refusal.

5. We would probably consider the ATM type to be in an interaction domain,
because it is concerned with interacting with the bank account, rather than
representing its essential operation. If so, the type views of the essential and
specification model concept domains are almost identical.

6. We have not given any of the statecharts here. To do so, we would have to make
choices about which objects are responsible for the validation process: is it a
responsibility of the account itself, of the ATM, or of both? Such decisions
depend on a multitude of factors, and their ultimate testing-ground is whether the
software is robust and reusable in the face of changing requirements.

A further consideration is the relationship between starting configurations in essential
and specification models. In some systems this is very similar, for example for the
banking model above, the implicit starting configuration in both essential and
specification models is a single instance of the type Bank. For other systems, the
starting configurations in essential and specification models may differ.

10.6 Logic in essential and specification models

In both essential and specification models, the instantaneous state of the system
consists of a set of related objects, each having a state and values for its properties.
The state of the system can be represented by an object diagram. Every event causes a
change in this state. The state change is specified using statecharts, where the new
states for objects responding to each event are shown by transitions, and the new
values for properties and associations are shown by post-conditions.

Invariants are statements which always hold about the structure of a model. Where
there is a strong structural correspondence between essential models and specification

 10.7 Mapping specifications to implementations 273

models, similar invariants will be found in both models. For example, in the simple
bank model shown above, if the Bank type had a property totalBalance with the
invariant totalBalance = sum(account.balance), this would apply in essential and
specification models alike.

Some post-conditions can be carried across from essential to specification models;
for example if the withdraw event in the Account type in the example above had a post-
condition as follows:

 withdraw(ac: Account, amount: Currency) / [balance’ = balance – amount]

this would apply in both essential and specification models.

10.7 Mapping specifications to implementations

Given a specification model for a software system, how do we convert it into an
implementation model? This is an important methodological question. The first thing
to say about it is that the conversion process requires considerable design skill and
cannot be automated straightforwardly. Issues to be considered include message-
sequencing, concurrency, persistence, division of responsibilities between domains,
seamlessness and traceability, design and implementation reuse, and others. In this
section we discuss several of these issues. More detailed consideration of the question
of domains is deferred until chapter 11, although we will assume that the general
principle of domains as introduced in chapter 1 is understood.

The general idea is that the structure of the concept domain type views, including
properties and invariants, are carried across into the implementation model, and each
specification model event is converted to a set of message-based mechanisms. To help
illustrate the process we introduce another worked example, this time of a system to
manage firings in a kiln for clay pots. The specification is as follows:

This system, which runs on a personal computer with a graphical user-interface

and disc drive, helps to manage an electric kiln for firing clay pots. The system

may be used to pre-set a programme of future firings, and will automatically turn

the kiln on and off at the correct times. There are several types of firing, each

with a fixed duration and an expected temperature profile. During a firing the

temperature of the kiln is automatically recorded at regular intervals and the

temperature readings displayed graphically, but the system does not control the

temperature of the kiln. We assume that the kiln temperature will be regulated

manually by operating dampers or the like. The temperature readings associated

with any earlier firing may be displayed at any time. During a firing, if the

actual temperature differs from the expected temperature by more than a pre-set

amount an audible alarm will be sounded to alert the operator.

274 Relationships between models

The specification model type view we have designed for the single concept domain of
this system is shown in figure 10.10. The starting configuration is a single Kiln
instance associated with a fixed number of FiringType instances. We recommend the
reader to take some time to study this specification and the associated statecharts
carefully before proceeding.

Invariants on the type view establish that the times of firings cannot overlap, and
that the times of readings lie between the start and end times of their associated firing.
We also assert that readings are held ordered, presumably by time.

Actual

Kiln-S

Firing-S
start: Time
end: Time
outsideLimit(Number, Time) : Boolean
overlaps(Time,Time): Boolean
Invariants:

∀f: kiln.firing • f≠self ⇒
not overlaps(f.start,f.end)

end = start + type.duration
outsideLimit(temp,time) ⇔

type.outsideLimit(temp, time-start)
overlaps(s,e) ⇔ (end ≥ s ∧ start ≤ e)

Reading-S
temperature : Number
time: Time
Invariants:

time ≥ actual.start
time ≤ actual.end

FiringType-S
duration : TimeInterval
expectedTemp(TimeInterval) : Number
limit: Number
outsideLimit(Number, TimeInterval) : Boolean
Invariants:

outsideLimit(temp, time) ⇔
abs(temp-expectedTemp(time)) > limit

Current

Past

scheduleOK(Time, FiringType) : Boolean
temperature : Number
outsideLimit(Number, Time) : Boolean
Invariants:

optional temperature
(current = nil) ⇒ not outsideLimit(temp, time)
(current ≠ nil) ⇒

(outsideLimit(temp, time) ⇔
current.outsideLimit(temp,time))

scheduleOK(start, type) ⇔
not (∃f: firing • f.overlaps(start, start+type.duration))

Scheduled

[{f: Kiln::firing |
f in Current}]

[seq]

type

[Kiln::firingType.firing]

Figure 10.10 Kiln system specification model type view

The statechart for the Kiln type is shown in figure 10.11. The body of this is
concerned with checking the kiln temperature against the prescribed limit. The first
time the temperature exceeds the limit an alarm event will be generated. The pre-
condition on scheduleFiring in the event list ensures that overlapping Firings cannot be
created.

 10.7 Mapping specifications to implementations 275

Kiln-S

Events:
scheduleFiring(start: Time, type: FiringType [type.kiln = self]) [scheduleOK(start, type)] /

[firing’ = firing ∪ {new Firing(start, type)}]
tempChange(k: Kiln, temp: Number, time: Time) / [temperature’ = temp]

Allow:
scheduleFiring
tempChange

Generations:
alarm(Kiln)

Creation:
()

tempChange(temp, time) [outsideLimit(temp,time)] / alarm(self)

Normal Alarm

tempChange(temp, time) [not outsideLimit(temp,time)]

Figure 10.11 Kiln specification model statechart

Figure 10.12 shows the statechart for the Firing type. This assumes an event
readTick occurring at regular intervals, detected by all the firing instances, which
causes them to be scheduled and de-scheduled at the correct times, switching the actual
kiln on and off in the process by generating the kilnOn and kilnOff events.

Firing-S

Events:
readTick(k: Kiln, now: Time [k = kiln])

Allow:
readTick

Creation:
(s: Time, t: FiringType) / [start’ = s] [firingType’ = t]

Generations:
kilnOn(Kiln)
kilnOff(Kiln)

Scheduled

Actual

readTick(now) [now ≥ start] / kilnOn(kiln)

Current Past

readTick(now) [now ≥ end] /
[reading’ = reading �

[new Reading(kiln.temperature, now)]]
kilnOff(kiln)

readTick(now) [now < end] /
[reading’ = reading � [new Reading(kiln.temperature, now)]]

Figure 10.12 Firing specification model statechart

276 Relationships between models

Because the readings are held in a sequence, we show the new reading being
concatenated to the end of the sequence.

Figure 10.13 is the statechart for Reading, showing initialisation of its properties.

Reading-S

Creation:
(temp: Number, t: Time) / [temperature’ = temp] [time’ = t]

Figure 10.13 Reading specification model statechart

The event table for the complete specification is as follows:

Event
Name

Object
Parameters

Value
Parameters

Pre-
conditions

Consequences Detected/
Generated

scheduleFiring type: FiringType start: Time The new
Firing won’t
overlap any
existing ones

A new Firing
is created

Detected

readTick k: Kiln now: Time none If there is a
current
Firing, a new
Reading is
created

Detected

tempChange k: Kiln now: Time
temp: Number

none If the
temperature
goes outside
limits, an
alarm is
generated

Detected

kilnOn k: Kiln Generated
kilnOff k: Kiln Generated
alarm k: Kiln Generated

We start to convert this specification into an implementation model by postulating that
the basic structure of the type view will remain unchanged. Types and associations in
the specification model will become types and associations in the implementation
model, and properties will become observers. This is always a good starting-point for
implementation. Carrying out this straightforward transformation gives us the type
view shown in figure 10.14, which, apart from minor syntactic differences and some
physical re-arrangement, is the same as figure 10.10.

In some systems it is necessary to introduce new properties, types or associations
into the implementation model as a consequence of the need to manage message-

 10.7 Mapping specifications to implementations 277

sequencing, concurrency or other implementation factors. The need for these
additional elements will become clear as the implementation is designed.

Observers:
temperature : Number
time: Time

Invariants:
time ≥ actual.start
time ≤ actual.end

Firing-I
Observers:

start: Time
end: Time
outsideLimit(Number, Time) : Boolean
overlaps(Time,Time): Boolean

Invariants:
∀f: kiln.firing • f≠self ⇒

not overlaps(f.start,f.end)
end = start + type.duration
outsideLimit(temp,time) ⇔

type.outsideLimit(temp, time-start)
overlaps(s,e) ⇔ (end ≥ s ∧ start ≤ e)

Observers:
duration : TimeInterval
expectedTemp(TimeInterval) : Number
limit: Number
outsideLimit(Number, TimeInterval) : Boolean

Invariants:
outsideLimit(temp, time) ⇔
abs(temp-expectedTemp(time)) > limit

Actual

Observers:
scheduleOK(Time, FiringType) : Boolean
temperature : Number
outsideLimit(Number, Time) : Boolean

Invariants:
(current = nil) ⇒ not outsideLimit(temp, time)
(current ≠ nil) ⇒

(outsideLimit(temp, time) ⇔
current.outsideLimit(temp,time))

scheduleOK(start, type) ⇔
not (∃f: firing • f.overlaps(start, start+type.duration))

Kiln-I

Reading-IFiringType-I

Current

Past

Scheduled

[{f : Kiln::firing | f in Current}]

[seq]

type

[Kiln::firingType.firing]

Figure 10.14 Preliminary implementation model type view

10.7.1 Persistence

Before making any further progress we must consider what objects will be held on
persistent storage (disc) and when. The specification model assumes that the software
operates continuously over time, and that there will be sufficient space to hold any
number of firings and readings. In the implementation, the Kiln and FiringType objects
are always instantiated in memory. We decide that the current firing (if any) and the
scheduled (future) firings will be held in memory, and that all the firings will be held
on disc. Past firings will only be held on disc, unless they are required to be viewed by
the operator, in which case the relevant firing and all its readings will be instantiated in
memory. All the readings of the current firing are held in memory and also written to
disc as they are created. If the software should crash during a firing, it can be re-started
and will carry on recording readings.

278 Relationships between models

These decisions prompt us to change the type view. We introduce separately
managed associations with each of the state sub-types of firing, and a derived
association covering all instantiated firings, as shown in figure 10.15.

Observers:
scheduleOK(Time, FiringType) : Boolean
temperature : Number
outsideLimit(Number, Time) : Boolean

Invariants:
(current = nil) ⇒ not outsideLimit(temp, time)
(current ≠ nil) ⇒

(outsideLimit(temp, time) ⇔
current.outsideLimit(temp,time))

scheduleOK(start, type) ⇔
not (∃f: firing • f.overlaps(start, start+type.duration))

Kiln-I

Observers:
duration : TimeInterval
expectedTemp(TimeInterval) : Number
limit: Number
outsideLimit(Number, TimeInterval) : Boolean

Invariants:
outsideLimit(temp, time) ⇔
abs(temp-expectedTemp(time)) > limit

FiringType-I
Observers:

temperature : Number
time: Time

Invariants:
time ≥ actual.start
time ≤ actual.end

Actual

Reading-I

Current

Past

Scheduled

[Kiln::scheduled ∪
 Kiln::past ∪

Kiln::current]

[f,g : Firing; f.start < g.start]

[seq]

Firing-I
Observers:

start: Time
end: Time
outsideLimit(Number, Time) : Boolean
overlaps(Time,Time): Boolean

Invariants:
∀f: kiln.firing • f≠self ⇒

not overlaps(f.start,f.end)
end = start + type.duration
outsideLimit(temp,time) ⇔

type.outsideLimit(temp, time-start)
overlaps(s,e) ⇔ (end ≥ s ∧ start ≤ e)

type

Figure 10.15 Associating the firing states separately

10.7.2 Other domains

So far we have only considered the concept domain. In fact, there must be other
domains of the design, describing objects whose responsibility is to connect the
concept domain to the system environment and to provide services to the concept
domain. We don’t consider the operation of other domains in detail, but we do need to
document our decisions about which objects exist in those domains. We assume that
the initial object configuration, established when the program is first loaded and
executed, is as shown in figure 10.16. In addition to the Kiln and FiringType objects,
there are objects managing the hardware interfaces with types Alarm, KilnSwitch,
TemperatureSensor and Clock; a PersistenceManager handles the interface with the
platform filing system, and a KilnInteractor handles the user interface. The need for
these objects arises fairly directly from considering the external events in the
specification model. The scheduleFiring event suggests a user-interface; readTick

 10.7 Mapping specifications to implementations 279

suggests a clock; and tempChange suggests a temperature sensor. The generated
events kilnOn and kilnOff suggest a switch, and the alarm event suggests an alarm
object.

(FiringType)

(FiringType)

(Clock)

(KilnSwitch)

(KilnInteractor)

(Persistence
Manager)

(Alarm)

(Kiln)

(Temperature
Sensor)

Figure 10.16 Initial object configuration

The type view in figure 10.17 shows the additional types introduced in the
implementation model. As well as the types of the static instances shown in figure
10.16, this view defines three interaction object types corresponding to windows in the
user interface: FiringViewer, for looking at a past firing, FiringScheduler, for scheduling
future firings, and KilnInteractor, for interacting with the current firing. The
annotations on the view indicate different domains.

Because instances of Reading and Firing need to persist, we make them sub-types of
a type PersistentObject. We do not go into any further detail in this example about
how the persist updater works; this subject is briefly revisited in chapter 11. We
simply assume here that sending the message persist to an instance of either of these
types causes a retrievable representation of it to be stored or updated on disc, and that
the interface to the PersistenceManager provides operations to retrieve and instantiate
these objects.

10.7.3 Mechanisms

The way to drive the implementation design process is by considering the key
mechanisms of the software, event by event. The first event we investigate is the
readTick event. In the specification model, all the firings are listening for these events.
This is not practical in the implementation model, not least because some of the Firing

280 Relationships between models

objects may not be instantiated in memory: in any case, the readTick event is ignored
by all the firings in the Past state. In the implementation model, we need to send
messages only to the appropriate objects. To help with this, we introduce a new
association into the type diagram, indicating which of the scheduled firings is next to
be scheduled. The type view, enhanced with the new association, is shown in figure
10.18.

We make the kiln responsible for receiving tick messages from the clock,
scheduling firings and dispatching readTick messages to the next and current firings.
Looking at the specification model, we see that readTick events cause changes of state
from Scheduled to Current and from Current to Past. Each time the next firing
receives a tick from the kiln, it checks whether its start time has been reached. If it has,
the kiln is asked to turn on. The mechanism below shows this particular tick, which
also causes a new next firing to be established.

KilnInteractor-I

FiringScheduler

FiringViewer-I

Kiln

Firing

Actual

Scheduled

Past

Current

Temperature
Sensor-I Alarm-I

KilnSwitch-I

Reading

Persistent
Object-I

Updaters:
persist

Observers:
tickInterval: Integer

Updaters:
scheduleFiring

Updaters:
alarmObservers:

temperature: Number

Updaters:
turnOn
turnOff

Persistence
Manager-I

Updaters:
getScheduledFirings(Kiln, Time)
getCurrentFiring(Kiln, Time)

Clock-I

Observers:
timeNow: Time

Updaters:
startTicks(Kiln, Integer) Sensor

and
Alarm

Persistence

Concept

User-Interface

Figure 10.17 Implementation model type view with domains

 10.7 Mapping specifications to implementations 281

FiringType-I
Observers:

duration : TimeInterval
expectedTemp(TimeInterval) : Number
limit: Number
outsideLimit(Number, TimeInterval) : Boolean

Invariants:
outsideLimit(temp, time) ⇔
abs(temp-expectedTemp(time)) > limit

Observers:
temperature : Number
time: Time

Invariants:
time ≥ actual.start
time ≤ actual.end

Firing-I

Actual

Kiln-I

Reading-I

Current

Past

Scheduled[Kiln::scheduled ∪
 Kiln::past ∪

Kiln::current]

[f,g : Firing; f.start < g.start]

next

[head Kiln::scheduled]

Updaters:
setReadings(seq of Readings)

[seq]

Observers:
start: Time
end: Time
outsideLimit(Number, Time) : Boolean
overlaps(Time,Time): Boolean

Invariants:
∀f: kiln.firing • f≠self ⇒

not overlaps(f.start,f.end)
end = start + type.duration
outsideLimit(temp,time) ⇔

type.outsideLimit(temp, time-start)
overlaps(s,e) ⇔ (end ≥ s ∧ start ≤ e)

type

Observers:
scheduleOK(Time, FiringType) : Boolean
temperature : Number
outsideLimit(Number, Time) : Boolean

Invariants:
(current = nil) ⇒ not outsideLimit(temp, time)
(current ≠ nil) ⇒

(outsideLimit(temp, time) ⇔
current.outsideLimit(temp,time))

scheduleOK(start, type) ⇔
not (∃f: scheduled • f.overlaps(start, start+type.duration))

Figure 10.18 Enhanced type view

(1) tick(t)

scheduled

next

next

current

(1.1.1) kilnOn

(KilnSwitch)
(1.1.1.1) turnOn

(Clock)

(Firing)
[in Scheduled]

(Kiln)

(Firing)
[in Scheduled]

(1.1) readTick(t)

Figure 10.19 Switching the kiln on

282 Relationships between models

In this mechanism the kiln sends the turnOn message to the switch in response to
being asked to go on. We have decided that the kiln should act as an intermediary
between the firings and the switch, rather than the firings sending the message directly
to the switch. This allows the kiln to use kilnOn messages to rearrange its firings. We
note that the readTick message must be sent in the relaxed section of the kiln’s tick
updater, otherwise the kilnOn message would cause a deadlock in the kiln.

As a result of exploring this mechanism, we have introduced some updaters: tick
and kilnOn for the kiln, and readTick for the firing.

The next mechanism we explore, in figure 10.20, is when a tick arrives during a
firing. Here we must decide how to handle temperature and time information, because
in the specification model both readTick and tempChange events carry time
information. We decide that the kiln first polls the temperature sensor to obtain the
temperature (temp). It then sends tempChange to itself to simulate the tempChange
event. The kiln checks that the temperature is within the limit expected at the time: in
this mechanism the temperature is outside the limit for the first time so the alarm is
sounded. Then the kiln interactor sends readTick to the current firing, which obtains
the temperature from the kiln and creates a new reading. This sends itself the message
persist, which causes it to be written to disc.

Note that there is an assumption about performance in our implementation
architecture, namely that the total processing of a tick – including writing the reading
to disc – can take place before the next tick.

(1) tick(t)

(1.1) temp := temperature

(Clock)

(Kiln)

(Temperature
Sensor)

(1.3.1) kilnTemp :=
temperature : temp

(Reading)

(1.3.2) new (self, kilnTemp, t)

(1.3.2.1) persist

(Alarm)
(1.2.2) alarm

(1.2) tempChange(t, temp)

current

(1.2.1) outsideLimit(temp,t)
(1.3) readTick(t)

(Firing)
[in Current]

(FiringType)

(1.2.1.1) outsideLimit(temp,t-start)

type

Figure 10.20 Creating a reading

 10.7 Mapping specifications to implementations 283

The third tick mechanism we explore in figure 10.21 is the one when the current
firing is due to finish. The firing creates a final reading and switches the kiln off by
sending the kilnOff message. The kiln now knows that the current firing has finished
and forgets about it at this point (i.e. has no instantiated association with it). We could
have omitted messages 1.2.1 and 1.2.1.1 from this mechanism for simplicity if we had
wanted to.

(KilnSwitch)
(1.3.1.1) turnOff

(1) tick(t)

(1.1) temp := temperature

(Clock)

(Kiln)

(Temperature
Sensor)

(1.2) tempChange(t, temp)

(1.3.1) kilnOff

current

(1.2.1) outsideLimit(temp,t)
(1.3) readTick(t)

(Firing)
[in Current]

(FiringType)

(1.2.1.1) outsideLimit(temp,t-start)
type

Figure 10.21 Switching the kiln off

In figure 10.22 we explore a mechanism which shows how a new firing is
scheduled. As a result of a user interaction, the kiln interactor receives a
scheduleFiring message. A firing scheduler is created. This asks the kiln object for all
of the currently scheduled firings, and the known firing types. Then, an interaction
with the user (not shown) takes place to determine the firing type and start time. The
firing scheduler takes responsibility, during this interaction, for ensuring that the new
firing is in the future and will not overlap with an existing scheduled firing. After this
interaction a new firing is created. This sends itself the message persist, which causes
it to be written to disc, and is then added to the kiln’s scheduled set using a
scheduleFiring updater. Because the firing scheduler has already ensured that the new
firing does not overlap with any existing firings, there is no need for the kiln to check
explicitly that the pre-condition for scheduleFiring is satisfied. In the mechanism
shown, the next firing is not altered by the mechanism.

284 Relationships between models

(KilnInteractor)
scheduleFiring (Firing

Scheduler)(1) (kiln)

(Kiln)

next scheduled
(Firing)

[in Scheduled]

(FiringType)
type

(1.3.1) persist

(1.1) scheduled
(1.2) firingType
(1.4) scheduleFiring(newFiring)

(1.3) newFiring := new (type, time, %New)

(FiringType)

(Firing)(Firing)

Figure 10.22 Scheduling a new firing

The last mechanism we investigate is the program execution itself. When there is
persistent storage, it is usually necessary to start execution by instantiating objects from
persistent storage to represent the current state of the system. In this case we assume
that the program can be executed at any time, even in the middle of a firing (in which
case we assume that the physical kiln is already switched on).

Figure 10.23 is a mechanism showing the startUp message sent to the kiln interactor
object. This is the beginning of program execution. The kiln interactor first asks the
persistence manager to instantiate the scheduled firings. The persistence manager
knows which firings are scheduled from the time: any firings with starting times in the
future must be scheduled. There are two of these, called firing1 and firing2 in the
mechanism, which are instantiated with parameters telling them which kiln they belong
to, which firing type they have, their starting time and which state they are in. After
each is instantiated, its identity is passed to the kiln in the scheduleFiring message sent
by the persistence manager. Then the kiln interactor asks the persistence manager to
instantiate the current firing, if there is one. Again, the persistence manager can find it
using the current time. The diagram shows a current firing, called firing3, being
instantiated and having its existing readings attached by the setReadings message. The
persistence manager then sends the kiln the addCurrentFiring message. Lastly, the kiln
interactor asks the clock to start ticking.

We show the statecharts for Firing in figure 10.24 and for Kiln in figure 10.25.
These have been designed by reasoning about the mechanisms and the specification
model to produce generic descriptions of the behaviour of the implementation model
types. The reader is strongly recommended to compare these statecharts with the
corresponding specification model statecharts given earlier, and to examine the reasons
for their similarities and differences carefully.

 10.7 Mapping specifications to implementations 285

(Persistence
Manager)

(2) getScheduledFirings(kiln, now)

startUp

(2.1) firing1 := new(type, time, %Scheduled)

(2.3) firing2 := new(type, time, %Scheduled)

(3) getCurrentFiring(kiln, now)

(3.1) firing3 := new(type, time, %Current)
(3.2) setReadings(readings)

(Kiln)

(2.2) scheduleFiring(firing1)
(2.4) scheduleFiring(firing2)
(3.3) addCurrentFiring(firing3)

(FiringType)

(Clock)

(4) startTicks(kiln, tickInterval)

scheduled

current

(Firing)
[in Scheduled]

(Firing)
[in Scheduled]

(1) now := timeNow

scheduled

(Firing)
[in Current]

(KilnInteractor)

Figure 10.23 Start up mechanism

Firing-I

Creation:
(s: Time, t: FiringType, st: {%New, %Scheduled, %Current, %Past}) /

[kiln’ = t.kiln] [start’ = s] [firingType’ = t]
Updaters:

setReadings(sr: seq of Reading) / [reading’ = sr]

Scheduled Actual

readTick(now) [now ≥ start] / [] kiln.kilnOn

Current

Past

readTick(now) [now ≥ end] /
[reading’ = reading �
[new Reading(self, kiln.temperature, now)]]
kiln.kilnOff

readTick(now) [now <end] /
[reading’ = reading �
[new Reading(self, kiln.temperature, now)]]

(st) [st = %Scheduled]

(st) [st = %Current]

(st) [st = %Past]

(st) [st = %New] /
[] self.persist

Allow:
setReadings

Allow:
readTick

Figure 10.24 Implementation model statechart for Firing

286 Relationships between models

Kiln-I

Updaters:
scheduleFiring(f: Firing) [scheduleOK(f.start, f.type)] / [scheduled’ = scheduled ← f]
addCurrentFiring(f: Firing) / [current’ = f]
kilnOn / [current’ = next] [scheduled’ = tail scheduled] kilnSwitch.turnOn
kilnOff / [current’ = nil] kilnSwitch.turnOff
tick(t: Time) / [temperature’ = temperatureSensor.temperature]

Allow:
scheduleFiring
tick

CurrentFiring

NoNextFiring
[next = nil]

NextFiring
[next ≠ nil]

scheduleFiring

kilnOff [next ≠ nil]
kilnOff [next = nil]

Normal

Alarm

tempChange (t, temp) [outsideLimit(temp, t)] / [] alarm.alarm

tempChange (t, temp) [not outsideLimit(temp,t)]

kilnOn

NoCurrentFiring

addCurrentFiring

tick(t) / [] tempChange(t, temperature), current.readTick(t)

tick(t) / [] tempChange(t, temperature), current.readTick(t)

tick(t) / [] next.readTick(t)

Allow:
outsideLimit
tempChange

Figure 10.25 Implementation model statechart for Kiln

Finally, figure 10.26 is the implementation model type view enhanced with all of
the additional information we have gleaned during this implementation model design
process.

Note that the scheduleOK observer in the Kiln type does not have to be implemented
because it is only referred to in a pre-condition which is not evaluated at run-time. On
the other hand, it may be implemented as a service to the interaction domain which
needs to validate the proposed contents of new firings.

Notice also that the invariant in Kiln defining the value of the outsideLimit property
has been simplified; this is because we have introduced an allow statement in the state
CurrentFiring, showing that it is invalid to call this observer except in this state.

 10.7 Mapping specifications to implementations 287

Updaters:
scheduleFiring(Firing)
addCurrentFiring(Firing)
tempChange(Time, Number)
kilnOn
kilnOff
tick(Time)

Observers:
scheduleOK(Time, FiringType) : Boolean
temperature : Number
outsideLimit(Number, Time): Boolean

Invariants:
(current ≠ nil) ⇒

(outsideLimit(temp, time) ⇔
current.outsideLimit(temp,time))

scheduleOK(start, type) ⇔
not (∃f: firing • f.overlaps(start, start+type.duration))

Observers:
temperature : Number
time: Time

Invariants:
time ≥ actual.start
time ≤ actual.end

Firing-I

Actual

Kiln-I

Reading-I

FiringType-I

Current

Past

Scheduled[Kiln::scheduled ∪
 Kiln::past ∪

Kiln::current]

[f,g : Firing;
f.start < g.start]

next

[head Kiln::scheduled]

Updaters:
readTick(Time)

Observers:
start: Time
end: Time
outsideLimit(Number, Time) : Boolean
overlaps(Time,Time): Boolean

Invariants:
∀f: kiln.firing • f≠self ⇒

not overlaps(f.start,f.end)
end = start + type.duration
outsideLimit(temp,time) ⇔

type.outsideLimit(temp, time-start)
overlaps(s,e) ⇔ (end ≥ s ∧ start ≤ e)

Updaters:
setReadings(seq of Readings)

[seq]

Observers:
duration : TimeInterval
expectedTemp(TimeInterval) : Number
limit: Number
outsideLimit(Number, TimeInterval) : Boolean

Invariants:
outsideLimit(temp, time) ⇔
abs(temp-expectedTemp(time)) > limit

type

Figure 10.26 Completed implementation model type view

10.7.4 Conclusions

Let’s attempt to draw some general conclusions about the conversion of a specification
model into an implementation from our experience with this example. Firstly, our
hypothesis that the type view can be carried over directly, converting properties into
observers, works fairly well.

The mapping from events to messages is more involved. The generated events
alarm, kilnOn and kilnOff map straightforwardly into messages to device-controlling
objects. However, neither of the detected events is transformed straightforwardly into
an updater.

Some of the complexity of the transformation results from a shift of responsibilities.
In the specification model, each firing is responsible for knowing when it is due to
start, and they all receive the readTick events. In the implementation model, to reduce
the message traffic we decide to make the kiln responsible for knowing the next firing
to start. As a result, the readTick event detected by all firings has been converted into a
readTick message sent only to the next or current one.

288 Relationships between models

Implementing the scheduleFiring event involves gathering the required information
(firing type and start time) from the human operator, via the user-interface. When the
information is gathered, the firing is created and the kiln is told about it. Again this
involves a shift in responsibilities: in the specification model, the kiln is responsible
for creating the firings, whereas in the implementation model, firings are created
independently of the kiln (by the user-interface and persistence manager) and the kiln
is notified of their existence using the scheduleFiring and addCurrentFiring updaters.
On the other hand, we use a policy much more aligned with that of the specification
model to create new readings. The main reason for the difference in policy is the fact
that some of the firings are kept on disc, and are thus much more loosely coupled with
the kiln than is implied by the specification model.

The statechart for Firing is reasonably similar to that in the specification models, the
main differences being due to the various different ways that a firing can be
instantiated in the implementation model, and the fact that firings in the past state are
not kept in memory – they are only retrieved on demand. The statechart for Kiln bears
some resemblance to that for the specification model, but is considerably complicated
by the need to manage the relationships between the kiln and the different firing sub-
states explicitly.

10.8 Transformation or invention?

We should emphasise that the formal relationship between essential, specification and
implementation models is far from straightforward. Transforming from one to another
is not simply a process of adding logical detail. Considered as a black box, our
objective in building the implementation model is to produce something which is – as
far as possible – formally equivalent, considered as a complete stimulus–response
mechanism, to the specification model. This does not mean that each component of
the implementation model is formally equivalent to a component of the specification
model. However, there are correspondences, and our approach is based on exploiting
these.

We must also emphasise that there are no right answers in the process of
transforming a design from a specification to an implementation. Having designed the
implementation model, we could revisit the specification model and alter it to match
the implementation model much more closely. We could model persistence, for
example, by introducing additional states – even in an essential model. We could
model messages using events detected by only one object. We might want to move
backwards and forwards between the specification and implementation models several
times, until we create an overall structure in which each of the models captures our
design intent best. In our minds we will also have considerations of reuse. We don’t
want our specification models to take on too much implementation detail because this
would prevent us from reusing these specifications in systems with a different
implementation architecture – a different approach to persistence, for example. On the
other hand, we don’t want specification models and implementation models to diverge

 10.10 Bibliographic notes 289

wildly or gratuitously, because the mental effort needed to understand their relationship
would be too great.

The essential point is that understanding does not come from following a recipe, it
comes from working with the materials. The activity of creating all these different
views of a system and struggling to understand the relationships between them and
make them consistent gives insight into the problem. By dealing with all the different
perspectives, the chances of leaving something out are minimised, and hence the
chances of getting the result to work correctly, as well as producing design artefacts
which are real assets for the developing organisation, are maximised.

10.9 Summary

• ‘Modelling the real world’ can be a misleading idea.
• Analysis and design are distinguished by the existence of choice, not by the use

of techniques.
• The main correspondence between models is in the type view for the concept

domain.
• State diagrams differ between essential and specification models, mainly because

specification model statecharts show event generation.
• Essential models should be scoped to describe interesting behaviour completely.
• The software boundary can be designed by considering essential model events

systematically, deciding whether each one is detected, generated or ignored by
the software.

• Identities of objects in the environment must be communicated and validated
across the software boundary.

• Post-conditions and invariants often correspond in essential and specification
models.

• A preliminary type view for the implementation model can be created by
reproducing the specification model type view replacing properties by observers.

• Persistence and performance must be considered when designing the
implementation model.

• The design process proceeds by considering key mechanisms corresponding to
each event, and refining the type view accordingly.

• Implementation model statecharts can be completed after mechanisms have been
designed.

• The formal relationship between the three models can be complex.

10.10 Bibliographic notes

On the subject of reality, analysis and design, we recommend to the interested reader
an excellent discussion of computer technology, the nature of human existence and the
philosophy of language in [Winog86].

290 Relationships between models

The methodological contributions of Booch [Booch91], Wirfs-Brock [Wirfs90] and
several others are solely about implementation modelling. Shlaer and Mellor in
[Shlae91] use a fairly precisely defined implementation-oriented technique for software
specification. The work of Rumbaugh et al. [Rumba91] is somewhat ambiguous, in
that many of their examples are obviously essential models, whereas others are clearly
implementation models, but the distinction is not rigorously supported by their
notation. Jacobson’s work [Jacob92] introduces a number of different modelling
perspectives, without distinguishing between them using formal notations. Martin and
Odell in [Marti92] appear to be primarily concerned with essential modelling, but some
of their examples such as ‘car chases’ seem to fall into the ‘real-world’ trap, as well as
only describing ‘normal’ behaviour rather than being complete descriptions.

The Fusion method from Coleman et al. [Colem94] agrees quite closely with our
specification/implementation modelling distinctions. However, they adopt global
descriptions of events, especially global variables, which we think are somewhat
contrary to object-oriented principles; in addition some of their formalism is not
sufficiently powerful to describe some important overall behaviours, such as an
arbitrary number of interleaved instances of an individual behaviour.

Building event scenarios to describe sequences of events in the world is a common
feature of many systems development methods, notably [Marti92] and [Jacob92]. As
we have seen, the interpretation of these sequences when humans and machinery both
participate can be a subtle affair, a fact typically not acknowledged in the object-
oriented literature, but discussed in some depth by Jackson [Jacks83].

10.11 References

[Booch91] G. Booch. Object-Oriented Design with Applications, Benjamin/Cummings, Redwood City,
California, 1991.

[Colem94] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes and P. Jeremaes.
Object-oriented Development: The Fusion method, Prentice-Hall, Englewood Cliffs, New Jersey,
1994.

[Jacks83] M. Jackson. Systems Development, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
[Jacob92] I. Jacobson, M. Christerson, P. Jonsson and G. Övergaard. Object-Oriented Software

Engineering, ACM Press, Addison-Wesley, Wokingham 1992.
[Marti92] J. Martin and J. Odell. Object-Oriented Analysis and Design, Prentice-Hall, Englewood

Cliffs, New Jersey, 1992.
[Rumba91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented

Modeling and Design, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.
[Shlae91] S. Shlaer and S.J. Mellor. Object Lifecycles: Modelling the world in states, Yourdon Press,

Englewood Cliffs, New Jersey, 1991.
[Winog86] T. Winograd and F. Flores. Understanding Computers and Cognition: A new foundation

for design, Ablex Corporation, Norwood, New Jersey, 1986.
[Wirfs90] R. Wirfs-Brock, B. Wilkerson and L. Wiener. Designing Object-Oriented Software,

Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

 291

CHAPTER 11

Domains

11.1 Domains

Software developers must partition a system of any significant size into smaller parts,
or sub-systems. We call these domains. A domain is a set of object types together
constituting a coherent sub-system which can meaningfully be considered as a group.
We can indicate the division of a system into domains by bubble diagrams, as shown in
figure 11.1. The bubbles represent domains and the arrows represent dependencies
between one domain and another.

Domain 3Domain 2

Domain 4

Domain 1

Figure 11.1 Domains and dependencies

Dependency between one domain and another is a consequence of relationships
between types in the two domains. A dependency exists between two domains a and b
if any type in a requires the existence of any type in b. Typical causes of dependency
are visible associations and sub-type/super-type relationships. Dependencies may be
uni-directional or bi-directional.

292 Domains

Normally, we insist that domains do not overlap, that is, no types exist
simultaneously in more than one domain. If a particular type seems to belong simulta-
neously in two or more domains, it is almost certainly appropriate to divide it into parts
which belong in the separate domains, and connect these parts using associations or
sub-type relationships.

Note that domains are a way of dividing the system description, not of the system
execution. Most software projects have some kind of overview diagram describing
how the system execution is partitioned. Object diagrams are one example, and
dataflow diagrams would be another. However, the main disadvantage of partitioning
a system according to its execution characteristics is the loss of potential reuse of
descriptions between the resulting sub-systems. Achieving this reuse within a system
requires careful attention to be given to how its description is partitioned into domains.

11.1.1 Concept, interaction and infrastructure domains

Broadly speaking, domains are of three types: concept domains, interaction domains,
and infrastructure domains. Concept domains model the phenomena in the problem
being solved. Interaction domains model the software-implemented mechanisms by
which the concept domain objects are kept up-to-date with the external environment
and vice-versa. Infrastructure domains provide general-purpose abstractions which
provide application-independent services to the other domains.

The distinction between concept and interaction domains serves two purposes.
Firstly, it allows us to separate those object types which we expect to be traceable
through the various model interpretations – the important concepts in the problem –
from those introduced to support a particular solution.

Secondly, it supports an important architectural principle: changes to the ways in
which objects modelling important problem concepts are connected to their
environment should not affect the conceptual objects themselves. For example, we
would like to be able to replace one user-interface by another that is completely
different without having to modify the concept-domain objects with which the user-
interface interacts. Ideally, our conceptual model, represented by the object types in
the concept domains, should be totally independent of the means of interaction. The
implication of this is that, ideally, concept domains should not be dependent on
interaction domains. As we will see later in this chapter, this is not always possible. A
consequence of this architectural principle is our rule that:

 Objects of types in concept domains never interact directly with the mechanical

devices that detect external stimuli or generate external responses: interaction

domain objects always act as intermediaries.

Infrastructure domains provide low-level building-blocks for the other domains to call
upon. They may be used from either concept or interaction domains. In this chapter
we only consider infrastructure items which are explicitly represented in our design

 11.1 Domains 293

formalisms. An implementation technology for an object-oriented design will also
contain components such as collections, dictionaries, tasks and semaphores which are
used to implement the fundamental concepts of our design formalisms; we can think of
these components as comprising an implicit infrastructure domain.

There are many ways in which a good domain division benefits a software
development. We have already discussed separating the concept model from the user-
interface. In general, domains allow concerns to be separated, so that changes in
requirements have the least impact on the software as a whole. Domains promote
reuse: for example, parts of a concept domain which do not depend upon the details of
interaction are much more likely to be usable in another context than are parts in which
details of interaction are inextricably wound up with problem-domain concepts.
Domains also provide the natural units for breaking down the effort on a project, as
long as the domain boundaries are properly defined, and changes in the boundaries
agreed, managed and understood.

11.1.2 Some examples

One example is the kiln control system introduced in chapter 10. This system
automates the operation of a kiln for firing clay pots. Our implementation for this
system has the following domains:

• concept domain;
• user-interface domain;
• sensor and alarm domain;
• persistence domain.

The relationships between the domains can be determined from the type view, shown
in figure 11.2.

The corresponding domain diagram is shown in figure 11.3. There may be further
domains unidentified here, because so far we do not have complete knowledge of the
problem. For example, there might be common hardware components in the
interaction domains; if so it would be appropriate to abstract out the common
components into a separate hardware infrastructure domain. Above all, we want to
isolate our design as far as possible from changes in the make of temperature sensor,
alarm, etc.

For a rather different example, in a simple word-processor we might find the
following main domains:

• logical domain, concerned with paragraphs, words, characters, fonts, styles, etc.;
• layout domain, concerned with the physical location of the words on the screen

or page, interpreting position information in terms of logical structure and vice-
versa;

294 Domains

KilnInteractor-I

FiringScheduler

FiringViewer-I

Kiln

Firing

Actual

Scheduled

Past

Current

Temperature
Sensor-I Alarm-I

KilnSwitch-I

Reading

Persistent
Object-I

Updaters:
persist

Observers:
tickInterval: Integer

Updaters:
scheduleFiring

Updaters:
alarmObservers:

temperature: Number

Updaters:
turnOn
turnOff

Persistence
Manager-I

Updaters:
getScheduledFirings(Kiln, Time)
getCurrentFiring(Kiln, Time)

Clock-I

Observers:
timeNow: Time

Updaters:
startTicks(Kiln, Integer) Sensor

and
Alarm

Persistence

Concept

User-Interface

Figure 11.2 Kiln type view showing domains

Concept

Persistence
Sensor

and
Alarm

User-Interface

Figure 11.3 Kiln domains

 11.1 Domains 295

• command domain, concerned with the interpretation of menu commands, ‘undo’,
etc.;

• window management domain, concerned with assembling editing windows from
user-interface components such as display areas, title bars, menu bars, scroll bars,
etc.;

• printing domain, concerned with sending the correct commands to the printer to
get documents printed.

The first three of these can be classified as concept domains, because they model the
essence of the word-processing situation; the last two are interaction domains, because
they act as intermediaries between the abstractions of word-processing and their
concrete manifestations on the screen and printer.

A third, and rather more complex, example would be a music composition system
with an interactive user-interface allowing the user to change the music’s
representation as conventional musical notation by direct manipulation, as well as
direct input from a musical keyboard and output to electronic musical instruments
using the MIDI1 protocol. The suggested main domains are as follows:

• music domain, concerned with musical sounds and their relationships in a
composition;

• notation domain, concerned with elements of musical notation and their
relationships with each other and with the music domain;

• MIDI domain, concerned with translating sequences of MIDI impulses into the
representations of musical sounds, and vice-versa;

• user-interface domain, concerned with creating manipulable visual displays of
musical notation;

• other interaction domains concerned with interfacing to devices, operating
system, persistent storage, printing, user-interface management, etc.

We would regard the first two as concept domains and the remainder as interaction
domains. Figure 11.4 is a suggested domain diagram for this example. It is arguable
that the notation domain is an interaction domain, because its role is to provide a way
of interacting with the composition. However, in a system whose primary purpose was
to edit notation, the notation domain would definitely be a concept domain. This
example shows that the division into concept and interaction domains can be debatable
in certain circumstances. Nevertheless, we still find the distinction extremely valuable,
and even in the simplest system we always identify at least one concept and one
interaction domain.

Figure 11.4 is roughly hierarchical. This is typical for multi-domain systems:
normally the hierarchy has infrastructure domains at the bottom, concept domains next
and interaction domains at the top, as shown in figure 11.5.

1Musical Instrument Digital Interface.

296 Domains

The domain hierarchy is often not strict because interaction domains often mutually
depend upon each other, and exceptionally a concept domain may depend on an
interaction domain. Later in this chapter we present some examples of how to manage
inter-domain dependencies.

Music

Notation

MIDI

UIOther

Figure 11.4 Domains for music composition system

Infrastructure

Concept

Interaction

Figure 11.5 Domain hierarchy

 11.2 Domains and model interpretations 297

11.2 Domains and model interpretations

Having introduced domains, we discuss how they are applicable in each of our
modelling interpretations: the essential, specification and implementation models.

The intended purpose of an essential model is to describe a system whose meaning
lies outside the operation of the software, so that the system being described can be
formally understood. Therefore, an essential model does not normally describe
interaction domains. Although it would be possible in theory to describe the structure
and behaviour of the software that implements an interaction domain using the
formalism and concepts of essential models, in practice there is usually little value in
doing so because in this case there would be no significant difference between
understanding the situation and specifying the software, and by using essential
modelling concepts we would lose the distinction between detected and generated
events and the discipline of behavioural type-conformance.

Domains in the essential model correspond to natural conceptual groupings or
layerings in the subject-matter being described. Usually these domains are arranged
hierarchically, with a single most essential domain not depending upon any others.
The music domain in the example given earlier depends upon nothing else, whereas the
notation domain is tightly coupled to the music domain.

A specification model is concerned with describing the behaviour of software and
hence, in principle, contains interaction domains. Concept domains in a specification
model mimic the external environment, receiving events from it and generating events
back into it, and are completely independent of the actual mechanisms used to detect
and generate the events. Events received by concept domains are generated by
interaction domains and vice-versa.

However, we often do not build a specification model for an interaction domain
because many of the design details are closely bound up with issues which are properly
the concern of the implementation model, such as message-sequencing or object
persistence. Also, interaction domains for interactive user-interfaces are usually
constructed in practice using existing class libraries or software development tools
such as Graphical User Interface (GUI) builders or User Interface Management
Systems (UIMS) which have their own formalisms more closely related to the
implementation model. In such cases, there may not be any great value in building a
specification model. Nevertheless, for complex interaction domains, such as
communication protocols or highly interactive user-interfaces (e.g. the musical
notation editor suggested above), building a specification model can be extremely
worthwhile.

In the implementation model we must deal with the practical problems of point-to-
point control flow, object management, persistence and the other issues which become
important when we implement an abstract specification in a finite execution
environment. All domains should therefore be fully described to an adequate level of
detail in the implementation model.

298 Domains

11.3 Domains in the implementation model

Assume that we have a specification model for a concept domain, and wish to design
an implementation model. The specification model describes the structures of objects
which will implement this domain, the events which will arrive as input into the
domain and the events which are generated as a result. The designer of an implemen-
tation model must deal with the following questions for the implementation of the
concept domain:

• When and where are objects instantiated?
• How are input events implemented as messages, which objects are they sent to,

and what are the consequences?
• How are changes in the state of the concept-domain objects made visible to the

interaction domains?
• How are output events implemented as messages?
• How do the interaction domains query the state of the concept domain?

In addition, the designer must of course implement the interaction domains themselves,
and designing interaction domains can be at least as difficult as designing concept
domains.

A real project might be implementing a large, distributed, real-time application, and
a complete discussion of all the issues that would arise in such a project is outside the
scope of this book. For completeness we would have to consider the overall topic of
distributed object management, involving large, often complex, and indeed sometimes
unanswered questions about object persistence, replication, sharing and mobility. As
an example, imagine a multi-user game with shared interactions over a wide-area
network where each participant’s ‘spaceship’ can be seen on every participant’s screen
simultaneously, with its position updated in real time. Considered as a specification
model this is relatively trivial, but as an implementation model it is rather complicated
and very dependent upon the details of the implementation environment.

We reduce the discussion to a manageable scope by focusing particularly on the
implementation of a concept domain and its boundary with the other domains. We
also assume that the implementation being designed is for a single-user system, with
objects in a single virtual address space, some of which may be stored and retrieved
from backing storage using a persistency mechanism – which may be files or some
kind of database management system.

11.3.1 Object instantiation

We must decide how and when an object will be instantiated in memory. There are
two reasons for doing this: creating it in the first place, and retrieving it subsequently
from backing storage. An object may be put in backing storage because of insufficient
room in memory, because it needs to be stored between separate program executions,

 11.3 Domains in the implementation model 299

or to allow it to be shared (particularly with applications which are not object-
oriented)2. The simplest option for storing objects between program executions is to
retrieve all objects at the beginning of an execution, and store them all again at the end.
A more flexible option is to retrieve sets of objects for well-defined user interactions,
and to store any that have changed at the end of the interaction.3

In our kiln example, introduced in chapter 10, some objects, such as the kiln itself,
are created afresh in memory each time the program is started and are not stored
persistently because their state can be reconstructed. Others, such as the scheduled
firings, are re-created from backing store when the program starts and held in memory
during execution. The past firings are only instantiated when needed and are removed
from memory when no longer required.

In chapter 10 we designed a starting configuration for the kiln system, reproduced
here as figure 11.6. Of course, this configuration does not spring into life by magic;
the implementor must decide how to initialise it. The initial configuration could be
created either at compile time or at run-time, the exact mechanism being very
dependent upon the implementation technology in use. The individual objects must be
created and associated correctly; either one or more of the initial objects must have this
responsibility or another object has it. We would not want this responsibility to belong
to a concept domain object because this would result in excessive coupling between
the concept and other domains.

(FiringType)

(FiringType)

(Clock)

(KilnSwitch)

(KilnInteractor)

(Persistence
Manager)

(Alarm)

(Kiln)

(Temperature
Sensor)

Figure 11.6 Starting configuration for kiln system

2We are interpreting ‘memory’ rather liberally here to mean ‘virtual object space’. This contains all objects which
may be reached directly by navigation without the intervention of explicit mechanisms to retrieve and instantiate
them. This definition certainly includes virtual memory, and also some kinds of object storage system which make
navigation transparent.

3This solution is readily generalised to a multi-user system, and various levels of protection against contention can
be provided using locking mechanisms. Normally, the strategy to be adopted is largely dictated by the
characteristics of the database management system chosen to support the implementation.

300 Domains

Other issues arise when we consider the dynamic creation of new objects. Consider
the mechanism shown in figure 11.7, which illustrates the creation of a new Firing
object.

(KilnInteractor)
scheduleFiring (Firing

Scheduler)(1) (kiln)

(Kiln)

next scheduled
(Firing)

[in Scheduled]

(FiringType)
type

(1.3.1) persist

(1.1) scheduled
(1.2) firingType
(1.4) scheduleFiring(newFiring)

(1.3) newFiring := new (type, time, %New)

(FiringType)

(Firing)(Firing)

Figure 11.7 Mechanism to create a Firing object

Notice how the firing scheduler queries the kiln to obtain the identities of the
currently scheduled firings (message 1.1) and the available firing types (message 1.2).
It does this because it needs to have a dialogue with the user to select the correct
properties for the new firing. The user will examine existing firings to decide on the
required start time and select from the available firing types. We will have more to say
about this in a moment. The firing scheduler creates the new object and then notifies
the kiln about it. This is a design decision. An alternative would have been to ask the
kiln to create it, using a message such as:

 createScheduledFiring(FiringType, Time)

It is difficult to make hard-and-fast rules about whether to create concept domain
objects inside the domain or outside. In this example it makes little difference, but we
can make the following general observations:

• When a new concept-domain object is created as a result of user-interface action,
as here, it is usual for the new object to become the subject of the user-interface:
the user-interface will need to know its identity. If it is not created by the
interaction domain, the identity of the new object must be returned by the
concept domain.

 11.3 Domains in the implementation model 301

• Whichever choice is made, it should be adhered to throughout the design. For
example, if a kiln ever has to create a firing other than in response to a firing
scheduler request, then it would be better for all firings to be created by the kiln.

11.3.2 Identities and keys

Object identities are a superb way of managing references to objects within the

software, but they are meaningless outside it. A user-interface cannot ask a user to
select between a number of objects on the basis of their identities; it must show the
user the value of one or more of the objects’ properties.

To continue with the example in figure 11.7, consider how the user is to select a
firing type for a new firing. The design given in chapter 10 defines the following
properties for firing types:

• duration;
• expected temperature at any time;
• limit of temperature deviation;
• a function determining whether a given temperature is outside limits;
• kiln (by virtue of association);
• firings of this type (again by association).

None of these taken alone suggest themselves as suitable ways of selecting a firing
type, but we might display in the user-interface all the details of each firing type and let
the user select from that information. Alternatively, we might introduce a new
property to help the user with this selection, such as a number or string allocated
uniquely to each firing type, analogous to a key in a relational database design.

In the concept domain we always prefer to distinguish objects by their identities.
Although external keys may be stored in the concept domain, they are almost never
used for navigation or access within that domain.

Converting between external keys and internal identities is in general a complex
matter. How it is done depends upon many factors including the following:

• the number of objects involved;
• the style of the selection being carried out;
• whether the objects are currently instantiated in object space;
• the persistence scheme in use.

Conversion is normally a responsibility of interaction domains, although sometimes
helper operations may be provided in the concept domain.

For an example of how not to use keys, consider creating a new firing by sending a
message to a kiln with the following format:

 createScheduledFiring(Number, Time)

302 Domains

where Number is the key of a FiringType object. If the user-interface already has the
identity of the FiringType object, this would be very poor design, because it is horribly
inefficient to pass the key of an object when its identity is already known. Very
frequently we see inexperienced designers passing keys rather than identities as
parameters throughout the system – with catastrophic consequences for performance.

11.3.3 Input events

In interaction domains objects detect events, such as button presses, temperature
changes or time passing, and translate them into messages. The actual detection is by
interaction with hardware devices, either by polling or by interrupts4. Either way, a
thread of control executing inside an interaction object will, at some point in time,
know that a particular event has occurred.

In the concept-domain specification model for the kiln example there is an event
scheduleFiring. This event causes a new firing to be created. What does it mean in the
implementation model to detect that event?

We decide that the event occurs at the moment the user confirms the details of the
new firing that they have already entered into the firing scheduler. Let us imagine a
graphical user-interface for the firing scheduler with an on-screen button that generates
this event. There might also be an option to invoke the same behaviour with a menu
option. We activate these user-interface gadgets by clicking the mouse. So the lowest-
level event is:

 mouseClick(s: Screen, pos: Point)

There are also two somewhat higher-level events, say:

 buttonPress(f: FiringScheduler, buttonNumber: Integer)

 menuSelect(f: FiringScheduler, optionNumber: Integer)

The relationship between these events is far from straightforward. A mouse click
within a certain rectangle generates a button press and a mouse click within another
rectangle generates a menu selection. However, one particular button and menu
selection will imply scheduling a firing. Assume that we design FiringScheduler so
that when it detects buttonPress with buttonNumber=3, or menuSelect with
optionNumber=6, it generates a scheduleFiring event.

If we now consider how to implement this using messages, it is clear that several
objects are involved. The mechanisms in figure 11.8 show what might be happening.
The FiringScheduler object has parameterised the Button and MenuOption objects to
send the appropriate number when they are clicked. The firing scheduler must itself

4At a higher level of abstraction, the interaction might be with the operating system and interrupts are replaced by
call-backs. Of course, the operating system is still interacting with the hardware in some manner.

 11.3 Domains in the implementation model 303

convert the abstract notions of button press and menu select into application-specific
terms, and thus send the correct messages into the concept domain. This is typical,
because we want the user-interface devices to be application-independent. So,
interaction-domain objects must first raise events to the correct level of abstraction
before they can be applied to the concept domain.5

(Mouse)

(Screen)

(Button)

(Firing
Scheduler)

(1) mouseClick(pos)

(2) select

(3) buttonPress(3)

(Mouse)

(Screen)

(Menu
Option)

(Firing
Scheduler)

(1) mouseClick(pos)

(2) select

(3) menuSelect(6)

Figure 11.8 Mechanisms to schedule a firing

A further responsibility of the interaction domain in this example is to validate the
event. Referring again to the specification model type view, the scheduleFiring event
has a pre-condition, based on the scheduleOK property, to ensure that overlapping
firings are not scheduled. In the specification model the behaviour is undefined if this
event occurs when scheduleOK is false. The precise method of validating the event
depends upon the details of the user-interface design; we assume the buttons and menu
entries representing the action of confirming the new firing are disabled if the details
entered would violate the pre-condition.

Having detected and validated an event, the interaction-domain object must apply it
to the concept domain. It does this by sending one or more messages. The first act of
design is to decide which messages are to be sent and which concept-domain objects
must receive them. In this case, the event must cause a scheduleFiring message to be
sent to the kiln. The event causes a single message-send, the simplest of the three
alternatives depicted in figure 11.9.

5In practice user-interface libraries often provide facilities to do most of this.

304 Domains

Concept
Domain

Interaction
Domain

event maps to single message

event maps to two messages,
order determined by interaction
domain

event maps to two messages, order
determined by concept domain

Figure 11.9 Converting input events to messages

We could predict that the event will correspond to a single message by examining
the specification model statecharts. Only one type of object, Kiln, detects
scheduleFiring events; therefore only kilns need to be told about them. Furthermore,
as only the kiln associated with the event detects it, only one object in total is interested
in the event. If the event were of interest to many objects we would need to ensure that
each was told about it. There are two implementation strategies for this: the first, and
most common, is for the interaction object that detects the event to notify each
interested object in some order it determines. The other is for the interaction object to
notify one interested object and then let it notify the others, in some order it
determines. The real difference is where the order of notification is determined.
Usually, the order is unimportant and can be left to the interaction object; sometimes it
is important and the concept-domain objects must decide.

11.3.4 Output events

Objects in the concept domain need to generate responses whose consequences are felt
in the environment, such as activating the kiln temperature alarm. In the specification
model we merely show concept-domain objects generating the events, without
considering how the event will be propagated to the environment. We are forced to
consider this when we design the boundary interface between the concept domain and
the interaction domains.

Since concept-domain objects do not generate external events themselves, we need
to arrange for them to send messages requesting such generations to objects from
interaction domains. To do this directly they must have associations with objects in
one or more interaction domains, giving the concept domain an undesirable coupling to
interaction domains. We can try to minimise this coupling. The important thing to

 11.3 Domains in the implementation model 305

consider is how the association between the concept-domain object and the interaction-
domain object was established. We offer the following three alternatives:

1. The tightest coupling occurs if the concept-domain object obtains the identity of
the interaction-domain object by creating it. This is the worst situation because
the concept-domain object must know the exact type of the interaction-domain
object required, and must know everything required to instantiate it.

2. Looser coupling is achieved by having objects outside the concept domain ‘plug’
together concept-domain objects with the required interaction-domain objects.
This is done by sending the concept-domain object a message with the identity of
an interaction-domain object as a parameter; the parameter is remembered for
later use. By building the association in this way the concept-domain object does
not need to know the exact type of the interaction-domain object, merely the type
that defines the required interface and to which the interaction-domain object
conforms. Different sub-types could be used without affecting the concept-
domain.

3. Slightly looser coupling still can be obtained by passing the identities of all
required interaction-domain objects as parameters of the message that is sent to
the concept-domain object and triggers the event generation.

A further option is for the concept-domain object to adopt an indirect approach, by
using the techniques in the following section to communicate its changes in state to an
interaction domain, which will infer the need to generate the external event.

11.3.5 State changes

In the specification model we assume that the state of the system is visible at all times,
and we do not design events whose purpose is merely to interrogate or report the state.
But if, in the implementation model, we really want to provide a dynamic view of the
state of objects in the concept domain to agents in the environment (such as people
looking at user interfaces) we must design a way of propagating state changes
automatically.

Consider the possible user-interface for the kiln interactor shown in figure 11.10.
During a firing, the graph is updated on each temperature change. We assume some
link between the kiln interactor and the alarm device. How does the kiln interactor
know it should update its graph and how does it obtain the necessary information?
Figure 11.11 shows two of the more obvious ways that it could be done.

Neither is very satisfactory. The left-hand mechanism requires the clock to know it
must send the tick to the kiln first, making the design very dependent upon correct
behaviour of the clock. The right-hand mechanism attempts to alleviate this by only
requiring one tick direct to the kiln; unfortunately this requires coupling between the
kiln and the kiln interactor, which is bad because now the kiln must be aware of the
objects viewing it. If another kiln interactor was created for the same kiln (as often

306 Domains

happens in graphical user-interfaces), the kiln would need to be aware of that object,
too.

Time

T

e

m

p

0

50

100

150

200

250

300

0 30 60 90 120 150 180 210 240 270 300

Expected

Actual

Schedule
Firing

Cancel
Alarm

Alarm!

Kiln Interactor

View Old
Firings

Figure 11.10 Kiln interactor user-interface

(1) tick(t)

(Clock)

(Kiln) (Kiln
Interactor)

(1.1) tempChange(t, temp)

(2) tick(t)

(2.1) temperature

(1) tick(t)

(Clock)

(Kiln)
(Kiln

Interactor)

(1.1) tempChange(t, temp)

(1.2) tempChange(t, temp)

Figure 11.11 Update mechanisms

We can avoid this direct coupling by introducing a general mechanism for objects to
notify interested parties of changes in their state using infrastructure domain types
ChangeGenerator and ChangeAcceptor. The idea, outlined in figure 11.12, is often
called dependency6 and appears as a feature of a number of languages and class
libraries.

6Not to be confused with the notion of domain dependency discussed elsewhere in this chapter.

 11.3 Domains in the implementation model 307

ChangeGenerator ChangeAccepter

Updaters:
changed(Symbol)
notify(ChangeAccepter)
release(ChangeAccepter)

Updaters:
update(ChangeGenerator, Symbol)

ChangeGenerator-I

Updaters:
changed(s: Symbol) / [] changeAccepter.update(self, s)
notify(ca: ChangeAccepter) / [changeAccepter’ = changeAccepter ∪ {ca}]
release(ca: ChangeAccepter) / [ca ∉ changeAccepter’]

Figure 11.12 Implementing dependency

If we make Kiln a sub-type of ChangeGenerator and KilnInteractor a sub-type of
ChangeAccepter7, we can arrange for the kiln to notify the kiln interactor without being
aware of it, provided it sends itself the necessary changed message, as shown in figure
11.13. This is a useful technique for breaking direct coupling between the concept
domain and the interaction domains.

(1) tick(t)

(Clock)

(Kiln) (Kiln
Interactor)

(1.1) tempChange(t, temp)
(1.2) changed(%Temp)

(1.2.1) update(self, %Temp)

(1.2.1.1) temperature

Figure 11.13 Dependency mechanism

11.3.6 State mirroring

There is a conflict between our desire to keep problem-domain concepts localised in
the concept domain and our need to expose those concepts in friendly and powerful
user-interfaces. If the user-interface is to guide the user in the appropriate choice of
commands it may need to know the possible state changes of the underlying concept-
domain object being viewed and changed.

7Most commonly, a sub-type extending both ChangeGenerator and ChangeAccepter is created, allowing objects
both to generate and accept changes.

308 Domains

Consider the simple statechart for a business invoice shown in figure 11.14. We
assume that an invoice is viewed and manipulated by an InvoiceInteractor object The
interactor may wish to display a menu of possible next actions but, in keeping with
today’s standards for menus, the other, invalid, options should be shown but greyed-
out. Therefore, the interactor must at all times know the current state and possible next
state changes for the invoice. The strong implication is that it operates against a
statechart such as that shown in figure 11.14.

New Checked

SentPaid Cancelled

check

send

pay cancel

Invoice-I

InvoiceInteractor Invoice

?

Figure 11.14 Invoices with interactors

It is for this reason that we often find designs where the concept-domain type’s
statechart is replicated in an interaction-domain type; indeed, sometimes the statechart
is actually transferred to the interaction domain, leaving the concept-domain type as
merely a data store.

This mirroring of concept-domain state in interaction domains is undesirable
because it makes changes to the software more difficult and may fail to operate
correctly if the underlying object (the invoice in this example) is changed via another
route.

Once again, we need to devise a standard generic solution to this problem. We can
devise a standard message protocol by which objects can expose their state and provide
information about valid changes. A simple solution which can be used when there are
no guards is to provide an observer allUpdaters, which returns a set of symbols naming
all updaters of the recipient, and validUpdaters, which returns a set of symbols naming
all updaters applicable in the current state. The behaviour of these observers follows
directly from the statechart. Much of this detail is ‘boiler-plate’, and could be

 11.3 Domains in the implementation model 309

generated automatically from a smart tool, or by using macros, or meta-programming
facilities8. It may be convenient simply to assume that these observers are defined as
standard within a type whenever they are required.

11.3.7 Inter-domain sub-types

We frequently couple domains using sub-typing. An example of this appears in the
kiln system, shown in figure 11.2. The concept-domain object types Firing and
Reading are sub-types of PersistentObject, a type in the persistence domain. This kind
of sub-typing occurs frequently because we often design domains, such as the
persistence domains, as frameworks, where the entire point is to sub-type. Sub-typing
in the opposite direction, with sub-types of concept-domain types in interaction
domains, is very unlikely.

When we sub-type a framework type, such as PersistentObject, it may be necessary
to override operations to support mechanisms in the framework. In this example,
Firing and Reading might override the persist operation to specialise its behaviour. For
example, we could define persist in Firing as follows:

 persist / [] persistenceManager.persistFiring(self)

and similarly for Reading9. In doing this we have allowed design information from one
domain to ‘leak’ into another. Many other solutions exist, but this leakage is
unavoidable10.

We can see another need for inter-domain sub-typing in this example. If we look at
the definition of the Clock type, as in figure 11.15, we can see that it can only tick
kilns. This seems an unnecessary restriction.

Here we have a dependency between the clock domain and the concept domain.
This is not a bad thing in itself, but in this case we want to make the clock more
general-purpose. We break the dependency (but introduce another of a different kind)
by creating a new type that is the prototype for all ticked objects. We show this design
in figure 11.16. By introducing TickedObject we permit the design of a general-
purpose clock, at the cost of having to make Kiln a sub-type of TickedObject. This is a
very small cost, because Kiln needs to define a response to tick in any case; unlike the

8So far we have resisted including meta-level facilities in our formalisms, but this is one area where they would be
very useful.

9To implement persistence, the persistence manager would need unique keys for all the persistent objects. It might
be able to extract these automatically from object IDs, or they might be allocated on object instantiation.

10Another approach would be to provide and use meta-level facilities. If objects contained run-time information
about their types, and types were themselves objects, we could implement persist generically in PersistentObject as
follows:

 persist / [] persistenceManager.persistObject(self)

This would avoid domain leakage at the object level, at the expense of leakage at the type level: the objects
representing the Firing and Reading types would provide operations to implement persistence for their instances.

310 Domains

persist updater considered earlier, this should not be thought of as ‘leakage’ from the
clock domain (now best thought of as an infrastructure domain) into the concept
domain.

Clock

Observers:
timeNow: Time

Updaters:
startTicks(Kiln, Integer)

KilnInteractor Kiln

Observers:
tickInterval: Integer

Updaters:
scheduleFiring

Updaters:
tick(Time)

Figure 11.15 Clocks which tick kilns

Clock

Observers:
timeNow: Time

Updaters:
startTicks(TickedObject, Integer)

KilnInteractor

Observers:
tickInterval: Integer

Updaters:
scheduleFiring

TickedObject

Updaters:
tick(Time)

Kiln

Figure 11.16 Clocks which tick anything

11.4 Domain dependencies revisited

The issue of domain dependencies is not really as cut-and-dried as we suggested at the
beginning of this section. Domain dependencies are difficult or impossible to avoid
and may be beneficial in some cases. We really need to consider the strength of the
dependency rather than the fact of its existence. We can make some general
observations as follows:

 11.5 Summary 311

• The strongest type of inter-domain dependency comes when an object of a type
in one domain creates an object of a type in another. We definitely wish to avoid
this kind of dependency between concept domains and interaction domains.

• A visible association between two types in different domains is a fairly strong
dependency and we should seek to limit the number of such associations from
concept domains to interaction domains.

• Sub-type dependency is similar in strength to a visible association, but tends to
have more beneficial consequences, as illustrated by the example in figure 11.16.
We should expect concept domains to have this kind of dependency on domains
that define frameworks.

11.5 Summary

• Domains are sub-systems which represent separate areas of concern.
• A domain is a set of object types.
• Domains don’t overlap, but may depend upon each other.
• Concept domains model the phenomena in the problem being solved; interaction

domains model the mechanisms by which concept-domain objects are kept up-to-
date with the external environment, and vice-versa.

• Concept domains never deal directly with hardware, or system-level software
that controls hardware.

• Domains promote reuse and provide a natural way of breaking down project
effort.

• Domains form a rough hierarchy, with interaction domains being more dependent
on concept domains than vice-versa.

• An essential model normally only describes concept domains.
• A specification model may describe interaction domains, but often doesn’t.
• An implementation model describes all domains.
• In the implementation model we must decide how and when an object will be

instantiated in memory.
• Objects in the concept domain may be created dynamically by interaction

domains or by the concept domain.
• Object identities are not visible externally; instead, objects are referred to by

combinations of properties called keys.
• Converting between keys and identities is a complex matter, and is normally a

responsibility of interaction domains.
• Keys should not be used for navigation within the model.
• An interaction domain converts input events at a low level of abstraction to

messages at the level of abstraction of the concept domain.
• A single event may map to several messages, whose order may be determined by

an interaction domain or a concept domain.
• To generate output events directly a concept domain must have an association

with an interaction domain: we try to minimise the coupling this causes.

312 Domains

• A scheme called dependency may be used to communicate concept-domain state
changes to an interaction domain without creating an undesirable coupling.

• Sometimes the state of a concept-domain object is mirrored in an interaction
domain. A standard set of observers may be provided for this purpose.

• Sub-typing may be used to couple domains cleanly. Interaction domains are
often designed as frameworks containing types specifically intended for sub-
typing.

• Domain dependencies are not cut-and-dried; there are different strengths of
dependency with benefits and disadvantages.

11.6 Bibliographic notes

Many of our domain ideas originate in the Model-View-Controller concept introduced
by Smalltalk [Goldb83]. Models live in concept domains and Views and Controllers
in interaction domains. MVC also introduced the dependency scheme used for
communicating model state changes: this has subsequently been adopted by many
other class libraries.

Shlaer and Mellor have a well-developed notion of domains in their work [Shlae91].
They distinguish between application, service, architecture and implementation
domains. Their ideas differ from ours in many details but the overall intent appears
similar.

Jacobsen introduces entity objects, interface objects and control objects in
[Jacob92]. Entity objects and control objects naturally correspond to our concept
domain, while interface objects correspond to interaction domains.

11.7 References

[Goldb83] A. Goldberg and D. Robson. Smalltalk-80: the Language and its Implementation, Addison-
Wesley, Reading, Massachusetts, 1983.

[Jacob92] I. Jacobson, M. Christerson, P. Jonsson and G. Övergaard. Object-Oriented Software

Engineering, ACM Press, Addison-Wesley, Wokingham 1992.
[Shlae91] S. Shlaer and S.J. Mellor. Object Lifecycles: Modelling the world in states, Yourdon Press,

Englewood Cliffs, New Jersey, 1991.

 313

CHAPTER 12

Encapsulation and reuse

12.1 Encapsulation

Encapsulation is a fundamental concept in object-oriented systems. Encapsulation

means hiding some or all of the details of the construction of part of a system from

other parts. Without encapsulation, the idea of a software component has no effective

meaning, because there is no way of drawing a boundary around part of the system to

define a component; and without components there can be no effective strategy for

reuse. When details of a system component are encapsulated, its clients are insulated

from those changes which they cannot see, and hence the management of system

evolution is greatly simplified. With encapsulation, the designer can defeat complexity

using the divide-and-conquer strategy: large systems built by assembling completely

understood small models can themselves be understood.

Encapsulation also brings advantages when reasoning about concurrent systems. As

explained in chapter 9, it is crucial to be able to deduce how knowledge of a particular

object is communicated around a system, in order to establish what kind of contract

this object may have with its clients. Encapsulation techniques can help to reason

about how this knowledge may spread.

For these reasons, a proper treatment of encapsulation is vital in any method for

object-oriented analysis, design or implementation. The encapsulation techniques in

this chapter can be applied to essential, specification or implementation models.

Encapsulation is most important for implementation models1, at least for the

foreseeable future, because it enables libraries of re-usable executable software

components to be created and disseminated. We envisage such libraries being

marketed in conjunction with detailed models built using techniques such as those in

this book. Such models would assist users to understand the intricacies of these

libraries much more readily than they can with just the code and informal

documentation.

1Despite this remark, all the examples given in this section refer to the essential or specification model for
simplicity.

314 Encapsulation and reuse

12.1.1 Principles

We give the name features to those aspects of a type (such as properties, associations

and operations) to which we want to control access. We wish to specify which types

have access to each individual feature of every type. Most programming languages

provide facilities for controlling access to individual features in various ways; for

example, C++ has a somewhat limited scheme in which class members may be marked

as public (accessible from anywhere), private (accessible only within the defining class

or its ‘friends’) or protected (accessible by the defining class, its ‘friends’ and its sub-

classes).

In general, we think about access to features in terms of suppliers and their clients.

One type is a client and another is its supplier if the client uses the features of the

supplier in any way.

A supplier may have several different kinds of client. Each kind of client is

distinguished by the set of features which the supplier makes available to it. The most

remote kind of relationship between a supplier and client is where the client just knows

of the existence of the supplier, but does not access any of its properties.

The most general kind of control would be to specify access to each feature

individually on a type-by-type basis. Although very flexible, controlling access

permissions in this way has the serious disadvantage that nominating which types have

access to each feature is a lot of tedious work, which may discourage developers from

making use of the facility.

To resolve this problem, we propose the concept of a viewpoint on a type. A

viewpoint is a restricted view of a type which defines the access for a particular kind of

client. A viewpoint contains a subset of the features of a type. One kind of viewpoint

would be the set of features intended for use by sub-types; this would correspond to the

protected+public parts of a C++ class. Another kind of viewpoint might be the set of

features intended for use by collaborating types, that is, the types which work together

with the supplier to implement the behaviour of a sub-system. In principle there could

be any number of different viewpoints of a type, although typically there will be two or

three.

12.1.2 Ownership and permission

A vital issue with encapsulation is the question of permission. Who is allowed to

define a viewpoint, and who is allowed to access it? The answer to this question can

only be properly framed in terms of human roles during the software development

process. Types should have owners, such that only their owners are allowed to create

viewpoints, and to nominate which other owners are allowed access to these

viewpoints. There may be many owners per type, and many types per owner. A full

treatment of roles in software development is well outside the scope of this discussion,

but a proper consideration together with proper tool support is vital for achieving

systematic reuse of software components between software systems.

 12.1 Encapsulation 315

12.1.3 Example

To illustrate the basic principles we re-visit the kiln example once again. We start by

looking at the specification model, whose type view is reproduced in figure 12.1, and

relevant statecharts in figures 12.2 and 12.3.

Consider how we might construct different viewpoints of the Firing type defining

the availability of its features for use by other types. Looking at each of the other

types, we need to include the following properties:

1. Kiln needs to access the outsideLimit and overlaps properties, and the creation

operation.

2. Reading needs to access the start and end properties, because of its invariant.

3. One Firing object needs to access the start and end properties of others, in order

to define the overlaps operation.

4. The state sub-types and related associations, and the association with FiringType

need not be accessible outside the individual Firing object itself.

Actual

Kiln-S

Firing-S
start: Time
end: Time
outsideLimit(Number, Time) : Boolean
overlaps(Time,Time): Boolean
Invariants:

∀f: kiln.firing • f≠self ⇒
not overlaps(f.start,f.end)

end = start + type.duration
outsideLimit(temp,time) ⇔

type.outsideLimit(temp, time-start)
overlaps(s,e) ⇔ (end ≥ s ∧ start ≤ e)

Reading-S
temperature : Number
time: Time
Invariants:

time ≥ actual.start
time ≤ actual.end

FiringType-S
duration : TimeInterval
expectedTemp(TimeInterval) : Number
limit: Number
outsideLimit(Number, TimeInterval) : Boolean
Invariants:

outsideLimit(temp, time) ⇔
abs(temp-expectedTemp(time)) > limit

Current

Past

scheduleOK(Time, FiringType) : Boolean
temperature : Number
outsideLimit(Number, Time) : Boolean
Invariants:

optional temperature
(current = nil) ⇒ not outsideLimit(temp, time)
(current ≠ nil) ⇒

(outsideLimit(temp, time) ⇔
current.outsideLimit(temp,time))

scheduleOK(start, type) ⇔
not (∃f: firing • f.overlaps(start, start+type.duration))

Scheduled

[{f: Kiln::firing |
f in Current}]

[seq]

type

[Kiln::firingType.firing]

Figure 12.1 Kiln system specification model type view

316 Encapsulation and reuse

Kiln-S

Events:
scheduleFiring(start: Time, type: FiringType [type.kiln = self]) [scheduleOK(start, type)] /

[firing’ = firing ∪ {new Firing(start, type)}]
tempChange(k: Kiln, temp: Number, time: Time) / [temperature’ = temp]

Allow:
scheduleFiring
tempChange

Generations:
alarm(Kiln)

Creation:
()

tempChange(temp, time) [outsideLimit(temp,time)] / alarm(self)

Normal Alarm

tempChange(temp, time) [not outsideLimit(temp,time)]

Figure 12.2 Kiln specification model statechart

Firing-S

Events:
readTick(k: Kiln, now: Time [k = kiln])

Allow:
readTick

Creation:
(s: Time, t: FiringType) / [start’ = s] [firingType’ = t]

Generations:
kilnOn(Kiln)
kilnOff(Kiln)

Scheduled

Actual

readTick(now) [now ≥ start] / kilnOn(kiln)

Current Past

readTick(now) [now ≥ end] /
[reading’ = reading �

[new Reading(kiln.temperature, now)]]
kilnOff(kiln)

readTick(now) [now < end] /
[reading’ = reading � [new Reading(kiln.temperature, now)]]

Figure 12.3 Firing specification model statechart

 12.1 Encapsulation 317

Thus there seem to be three potentially meaningful viewpoints:

1. providing access to start and end;

2. providing access to outsideLimit, overlaps and creation; and

3. providing access to all properties and associations.

The first viewpoint is needed by Reading and Firing, the second by Kiln and the third

only by the individual Firing instance itself. We assume that an instance always has

complete knowledge of its own type, and never define an explicit viewpoint for this

purpose. Hence we only define explicit viewpoints for the first two cases. We might

show these two viewpoints superimposed on the type diagram, as in figure 12.4.

To avoid clutter we have left out the internal details of FiringType, Kiln and Reading.

The two viewpoints are shown as rectangles without corners. Thick arrows show that

they actually belong to the Firing type, and thin arrows show the access granted to the

viewpoints from Firing, Kiln and Reading. We’ve shown the creation operation on the

type view for the purpose of this discussion.

The arrow from Firing to its own viewpoint describes the visibility one Firing object

has of another; we return to this point later in the chapter.

Actual

Kiln-S

Firing-S
start: Time
end: Time
outsideLimit(Number, Time) : Boolean
overlaps(Time,Time): Boolean
Invariants:

∀f: kiln.firing • f≠self ⇒
not overlaps(f.start,f.end)

end = start + type.duration
outsideLimit(temp,time) ⇔

type.outsideLimit(temp, time-start)
overlaps(s,e) ⇔ (end ≥ s ∧ start ≤ e)

Creation:
(Time,FiringType)

Reading-S
FiringType-S

Current

Past

Scheduled

[{f: Kiln::firing |
f in Current}]

[seq]

type

[Kiln::firingType.firing]

Firing-S

start: Time
end: Time

Firing-S

outsideLimit(Number, Time) : Boolean
overlaps(Time,Time): Boolean
Creation:

(Time,FiringType)

Figure 12.4 Viewpoints

318 Encapsulation and reuse

We might produce a complete diagram of this kind by carrying out similar reasoning

for all of the other types in the system; the resulting diagram would show all types, all

viewpoints and the visibility relationships between all types and the viewpoints they

access. However, such a diagram would be very cluttered and not particularly useful.

Viewpoint diagrams focusing on specified sets of types and showing what they access

are much more useful in practice. Because there are a large number of possible

diagrams of this kind, using these diagrams to define all the access relationships in a

system only makes real sense in conjunction with computerised tools. Paper versions

of the diagrams may nevertheless be used for reasoning about specific aspects of the

system.

12.2 Viewpoint diagrams

A viewpoint diagram focuses on a set of types (often a single type) called the focus

type(s), showing its access to other types in the overall system. Figure 12.5 is such a

diagram, focusing on the single type Kiln and showing its access viewpoints on Firing

and FiringType. Notice the following points:

• the Reading type is unknown;

• navigation of associations back from Firing to Kiln is not visible; and

• the association with the current firing, derived by a rule in the original type

diagram, has been ‘pushed up’ into the Firing type itself, because the state sub-

types are no longer visible.

Kiln-S

Firing-SFiringType-S

[member of]

current

scheduleOK(Time, FiringType) : Boolean
temperature : Number
outsideLimit(Number, Time) : Boolean
Invariants:

(current = nil) ⇒ not outsideLimit(temp, time)
(current ≠ nil) ⇒

(outsideLimit(temp, time) ⇔
current.outsideLimit(temp,time))

scheduleOK(start, type) ⇔
not (∃f: firing • f.overlaps(start, start+type.duration))

outsideLimit(Number, Time) : Boolean
overlaps(Time,Time): Boolean
Creation:

(Time, FiringType)

duration : TimeInterval

Figure 12.5 Viewpoint diagram focusing on Kiln

 12.2 Viewpoint diagrams 319

Each viewpoint diagram must be consistent, in the sense that all names used in all

expressions in the focus types must be in scope in the viewpoint diagram. Thus given

that figure 12.5 is the viewpoint diagram focused on the type Kiln, it would not be valid

for Kiln to mention Reading, or to invoke any of the properties of the other types not

shown in the diagram, within its type rectangle or its statechart.

Importing a viewpoint such as Firing into a viewpoint diagram makes its statechart

available in a limited way. The focus type needs some access to the statechart in order

to reason about the way in which it makes use of the facilities of the viewpoint, but

cannot have access to all of the statechart because it may include references to features

of other types not visible in the viewpoint. The way we deal with this is to substitute

all expressions on the statechart which refer to inaccessible features by an ellipsis

consisting of dots: ‘...’. Thus the statechart corresponding to the Firing viewpoint in

figure 12.5 is shown in figure 12.6.

Firing-S

Events:
readTick(k: Kiln, now: Time [...])

Allow:
readTick

Creation:
(s: Time, t: FiringType) / [...] [firingType’ = t]

Generations:
kilnOn(Kiln)
kilnOff(Kiln)

Scheduled

Actual

readTick(now) [...] / kilnOn(...)

Current Past

readTick(now) [...] / [...] kilnOff(...)

readTick(now) [...] / [...]

Figure 12.6 Statechart for the Firing viewpoint

If tools are available, the diagram shown in figure 12.5 may be used for editing

features of the Kiln type. If, during development, it is decided that access to features of

other types are needed which are not available in the visible viewpoints, additional

viewpoints must be imported into the diagram. This naturally implies the availability

of a repository of viewpoints with suitable facilities for navigation.

Note that a type can only have access to a single viewpoint of another type.

Although in figure 12.5 the outsideLimit property of the current firing is only accessed

from the kiln via the current association, we do not introduce a separate viewpoint for

this association. In principle, we could define several viewpoints from one type to

320 Encapsulation and reuse

another, depending on the particular access route; in practice, this idea seems

unnecessarily cumbersome and so we discard it (with one exception introduced later),

although with very sophisticated automation the idea might be workable.

Sometimes a type may need access to a viewpoint of another type without having

any explicit associations to it. This happens if the focus type:

• defines properties or creation operations which mention the viewpoint type as a

parameter;

• defines local statechart variables of the viewpoint type; or

• in the essential or specification model, mentions the viewpoint type as an event

parameter without using it elsewhere.

In such a case, the viewpoint is simply shown detached on the viewpoint diagram, with

no associations. For example, figure 12.7 illustrates a Person type, whose instances

are created by copying the name from a Message object, but which has no association

to the Message type. If Person also had an association with a viewpoint of Message,

then this detached viewpoint would be connected via an association line.

Person

name: String

Message

name: String

Figure 12.7 Viewpoint with no association

Sometimes a viewpoint may itself have visible outgoing associations to another

viewpoint. For example, figure 12.8 focuses on the Manufacturer type, showing how it

has visibility of the Bottle type and its association to the Label type. These visibilities

are used to construct the derived association between Manufacturer and Label.

Given figure 12.8, we might construct a viewpoint of Manufacturer for use by its

own clients, as shown in figure 12.9. In this diagram the fact that the association

between Manufacturer and Label is derived is not visible, and not shown.

Constructing viewpoint diagrams which show long chains of associations is

generally a bad idea, because such diagrams increase the coupling between types by

exposing details of their relationships to clients.

A diagram may focus on several types. Returning to the earlier example, figure

12.10 shows a viewpoint diagram focusing on both Kiln and Firing. Notice that a single

viewpoint of FiringType is shared between Kiln and Firing, even though both types do

not use all of the properties exported in the viewpoint.

 12.2 Viewpoint diagrams 321

ManufacturerBottle

Label

[Manufacturer:: bottle.label]

Figure 12.8 Viewpoint with a visible association

ManufacturerBottle

Label

Figure 12.9 Viewpoint of Manufacturer

Figure 12.10 has two different interpretations, as follows:

1. Access restrictions exist between the types Kiln and Firing, but are not shown in

the diagram.

2. The diagram specifically indicates that the types Kiln and Firing have complete

access to each other: each is a ‘friend’ of the other, in C++ terminology.

Both these interpretations are in fact useful, and both are permitted. The first is most

useful to show the viewpoints at the edge of a complete sub-system, especially a

domain. The second is particularly useful when no viewpoints have yet been defined

between two types, and the designer is making decisions about the relationships of the

types to each other.

The difference is that the first interpretation is ‘read-only’. If the diagram were

shown by an automated design tool, the first interpretation does not show which

features of Firing are actually accessible to Kiln. Hence it gives the designer no

322 Encapsulation and reuse

guidance about how to refer to Firing when editing the implementation of Kiln. Hence

we do not allow such editing to occur. On the other hand, with the second

interpretation, the designer knows that he or she has complete access to the features of

the other type, and so editing is allowed.

Actual

Kiln-S

Firing-S
start: Time
end: Time
outsideLimit(Number, Time) : Boolean
overlaps(Time,Time): Boolean
Invariants:

∀f: kiln.firing • f≠self ⇒
not overlaps(f.start,f.end)

end = start + type.duration
outsideLimit(temp,time) ⇔

type.outsideLimit(temp, time-start)
overlaps(s,e) ⇔ (end ≥ s ∧ start ≤ e)

Creation:
(Time,FiringType)

Reading-S

Current

Past

scheduleOK(Time, FiringType) : Boolean
temperature : Number
outsideLimit(Number, Time) : Boolean
Invariants:

(current = nil) ⇒ not outsideLimit(temp, time)
(current ≠ nil) ⇒

(outsideLimit(temp, time) ⇔
current.outsideLimit(temp,time))

scheduleOK(start, type) ⇔
not (∃f: firing • f.overlaps(start, start+type.duration))

Scheduled

[{f: Kiln::firing |
f in Current}]

[seq]

[Kiln::firingType.firing]

type

FiringType
duration : TimeInterval
outsideLimit(Number, TimeInterval) : Boolean

Figure 12.10 Viewpoint diagram focusing on two types

12.2.1 Self-access

One rather subtle question is whether a type’s features are exported to itself. Perhaps it

seems immediately obvious that they should be, but this is not necessarily so. There

are two cases to consider: exporting features from an instance of a type to itself, and

from one instance of the type to another2. We have already noted that all features of a

type are automatically accessible from an instance to itself. However, features are only

accessible from one instance to another if the feature is explicitly exported to the type

2This distinction represents an important difference between the Smalltalk and C++ views of encapsulation: in
Smalltalk, instance variables are only visible within the instance in which they are stored, whereas in C++ private
members are accessible to any instance of the same class.

 12.2 Viewpoint diagrams 323

itself, that is, a viewpoint is constructed showing which features of the type are to be

made accessible between different instances – in fact we did this in figure 12.4 to show

access from the Firing object to itself.

You have probably noticed that all the diagrams so far show associations from the

focus type(s) as non-reversible; this is because navigating from an object to another

object and back again is just a special case of navigating along two associations, and if

possible at all, ends up with a viewpoint on the original type rather than the total access

enjoyed by self.

Consider figure 12.11, which slightly extends an example first introduced in chapter

3. We wish to construct a diagram showing the viewpoint one Person object has of

another, because it is possible to navigate from one to another in two ways via the

recursive association. The viewpoint we need describes the access that the original

object has to the features of the objects obtained by navigating.

Person

name : String
age: Integer

childOfMother

mother

Figure 12.11 A recursive association

This viewpoint is shown in figure 12.12, which tells us that by navigating from a

child to its mother or vice-versa gives a Person object of which only the name property

is visible. The properties which are not visible for the remote object are the age and

the ability to navigate any further. Note the mandatory use of the crosses to show that

the association may not be navigated from the Person viewpoint back to the Person

type.

Person

Person

childOfMother

name : String
age: Integer

mother

name : String

Figure 12.12 Viewpoint showing navigation of a recursive association

324 Encapsulation and reuse

Figure 12.13 illustrates an extended situation where the viewpoint allows further

navigation, but the age property is still private.

Person

Person

childOfMother

name : String
age: Integer

mother

name : String

childOfMother

mother

Figure 12.13 Extended viewpoint navigating a recursive association

We now understand how to show a reversible association starting at the focus type;

it must be shown ending up at a viewpoint on the focus type, as shown in figure 12.14,

in which the association to Bottle may be navigated back to a viewpoint of

Manufacturer.

ManufacturerBottle

Manufacturer

Figure 12.14 A reversible association

12.2.2 Sub-types and super-types

There are four main questions that need to be answered when considering a sub-type

relationship, concerning the viewpoint (if any) that:

1. a client of a sub-type has of the super-type(s);

 12.2 Viewpoint diagrams 325

2. a client of a super-type has of the sub-type(s);

3. a sub-type has of its own super-type(s);

4. a super-type has of its own sub-type(s).

We consider each of these in turn.

Client viewpoint of super-types

Super-types are not always visible to clients. Let us consider an example.

Client Corporation

regNo: Number

Figure 12.15 Client’s viewpoint on Corporation

Figure 12.15 focuses on a type called Client (whose purpose is irrelevant to the

discussion) showing its access to a viewpoint of Corporation. In fact Corporation

extends Company, as shown in figure 12.16.

Corporation
regNo: Number

Company
name: String

Figure 12.16 Corporation is a sub-type

If we wish to give Client access to the name property of Company, we may do so by

creating a combined viewpoint showing name as though it were part of Corporation.

If Company and Corporation both had non-trivial statecharts, they would be combined

in this viewpoint.

Client Corporation

name: String
regNo: Number

Figure 12.16 Viewpoint showing Company properties as part of Corporation

326 Encapsulation and reuse

Alternatively we can create a viewpoint of Corporation in which the super-type

relationship is shown explicitly, as shown in figure 12.17. We would need to do this,

for example, if there were a separate association from Client to Company and we

wished to take advantage of the sub-type relationship by adding Corporation objects to

the company association.

Client Corporation

regNo: Number

Company

name: String

Figure 12.17 Viewpoints showing Company separately

Client viewpoint of sub-types

The existence of sub-types is only visible to clients if they acquire viewpoints of them.

The existence of the type extension relationship must be explicitly included in a

viewpoint; the situation illustrated in figure 12.18 is perfectly possible, where Client

has separate access to viewpoints of Company and Corporation, but cannot treat them

as related types, because the super-type relationship of Corporation has not been

explicitly included in the viewpoint.

Client Corporation

name: String
regNo: Number

Company

name: String

Figure 12.18 Viewpoints omitting super-type relationship

 12.2 Viewpoint diagrams 327

Sub-type viewpoint of super-types

There are two kinds of viewpoint that a sub-type can have of a super-type,

distinguished for similar reasons to those discussed in the section above on self-access:

an object may invoke features defined in a super-type either on itself, or on another

object. We do not make all features of super-types automatically visible via self,

because this would limit the ability of designers to alter the design of a super-type

without affecting its sub-types. So we define an explicit viewpoint which describes

this kind of access. However, this viewpoint is quite different from the viewpoint

describing access to super-type features for a distinct object. In this case we break our

rule that one type only has a single viewpoint of another: two viewpoints may be

provided from a type to its super-type, one for self-access and one for remote access.

Corporation
regNo: Number

Company

name: String
Creation:

(String)

Company

name: String

creditors

Figure 12.19 Two viewpoints on the same super-type

Figure 12.19 illustrates these two viewpoints for our current example. The self-

viewpoint includes access to the creation operation for Company: to create a

Corporation object it is necessary to be able to create its Company features. However,

the remote viewpoint, which shows the access that a corporation has to each of its

creditors, does not allow creation.

Note that the viewpoint on the super-type describes access to those features which

may be invoked by a sub-type. To extend the super-type properly, the sub-type must

have knowledge about the structure of the super-type’s statechart; this is always

available in full, regardless of which features are included in the viewpoint.

Super-type viewpoint of sub-types

Since super-types have no privileged access to their sub-types, a super-type’s

relationship with its sub-types is exactly the same as any other client’s.

For example, figure 12.20 illustrates the viewpoint that a type Message has of two

sub-types, PriorityMessage and SimpleMessage. The viewpoints show the sub-types as

extensions of a viewpoint of Message. Note that the associations are navigable in both

directions from the viewpoints.

328 Encapsulation and reuse

Message
contents: String

SimpleMessagePriorityMessage

Message

contents: String

priorityReplies

simpleReplies

simpleRepliespriorityReplies

Figure 12.20 Viewpoints on sub-types

12.2.3 Constructing viewpoints

Viewpoints are constructed from types (or possibly from other viewpoints) by

nominating features to be included. How this is done in practice is an issue for

automated tools. We often talk about exporting a feature when including it in a

viewpoint.

The most basic feature of a type is its existence (including its name). Knowledge of

the existence of a type T gives a client the ability:

1. to construct an association to T;

2. to mention T as a parameter or result type for a property, observer or updater;

3. to mention T as a parameter to a creation operation;

4. to list events having T as a parameter in the event list (in essential and

specification models only).

Simply knowing the existence of T does not give the client the ability to invoke any

operations on T, or create an instance of T.

Each property, observer/updater, association and creation operation is a separate

feature which may be exported individually. Exporting a property (in essential and

specification models) or an observer/updater (in implementation models) to a client

grants the ability to invoke that property in invariants, guards, post-conditions, etc.

The same applies to associations (which are observers in the implementation model).

Exporting a creation operation to a client grants the ability to create new instances of

the exporter using that operation. A sub-type/super-type link is a separately exportable

feature of the sub-type.

A type invariant appears in a viewpoint if all the elements of the expression are in

scope in the viewpoint. A viewpoint may include a restricted invariant, implied by the

full invariant but only mentioning elements in scope. For example, if the full invariant

 12.3 The viewpoint repository 329

is x=3 ∧∧∧∧ y<z, but z is not in scope in the viewpoint under consideration, the invariant

x=3 should still appear. A clever tool would automate this.

Explicitly depicted state sub-types are exported as a whole: either all of the state

sub-types appear in a viewpoint, or none of them do.

12.3 The viewpoint repository

So far in this section we have introduced the concept of a viewpoint, and shown how

viewpoint diagrams can be used to define the access that one type has of another. This

provides a simple theoretical basis for a discipline of reusable software components.

Much more important in practice is the discipline used to manage these components

during a software development.

Up to now, for the purposes of explanation we have tended to imply that the

purpose of viewpoints is to formalise the visibility relationships between the types in a

pre-existing complete model. At this point we should loosen this assumption: we

envisage viewpoints on pre-existing types as providing the building blocks from which

complete models are constructed. The overall process of model development consists

of defining types and their viewpoints, placing them in a repository and subsequently

selecting elements from the repository for defining new types and viewpoints.

Viewpoints should be designed to minimise the dependencies between one type and

another; nevertheless these dependencies still exist, and the repository must help to

manage the effects of changing the definition of any type. A complete model is

defined simply by nominating an initial type, in which case the complete model

consists of all the types which have viewpoints reachable directly or indirectly by

navigation from the initial type.

A vital issue is how viewpoints should be named and catalogued. We envisage that

every viewpoint has a descriptive name which indicates its intended purpose and which

appears in the catalogue. A decent repository should support many strategies for

finding viewpoints, apart from simply searching by name; a discussion of these is

outside the scope of this book.

12.3.1 Re-naming

Whenever a viewpoint is imported from a repository into a viewpoint diagram, selected

names may be substituted in order to make it more useful to the importing context;

either because the existing names conflict with names already in scope in the importing

context or simply because different names are desired.

Consider figure 12.21, which shows a viewpoint on a specification model type

called Customer, with a property called name and an association with another

viewpoint called BankAccount. Imagine that we wish to import the Customer

viewpoint into another diagram, but wish to change the name of the type to

330 Encapsulation and reuse

BankCustomer because there is already a Customer type in the target diagram. We

may rename the type locally for the importing diagram with an expression, thus:

 BankCustomer ←←←← Customer.

Any name in a viewpoint may be substituted, as long as the overall result is legal. A

re-naming expression is evaluated at the point where the viewpoint is imported into a

new context. The practicalities of this must be managed by automated tools; there is

no realistic way that this kind of re-naming can be managed on paper.

Once a viewpoint appears re-named in a diagram, it would be an error to import

another viewpoint on the same type into the same diagram with a different re-naming.

Customer-S

name : String

BankAccount-S

balance : Number

Figure 12.21 Viewpoints on BankAccount and Customer

12.4 Parameterised types

Any type can be parameterised on a value type. Figure 12.22 shows three types which

together define a tree structure, parameterised on the type of the contents property.

Node(X)

contents: X

SubNodeRootNode

child

parent

Figure 12.22 Defining a parameterised type

 12.4 Parameterised types 331

A parameterised type may be (but does not have to be) instantiated when a

viewpoint is created of it. For example, we might instantiate figure 12.22 to create the

diagram in figure 12.23, in which the parameter X has been substituted by the type

Integer. As with re-naming, the pragmatics of substitution are managed by the

repository. The viewpoints in figure 12.23 may be manipulated further according to

the normal principles.

Any number of different instantiations of the same parameterised type may appear

in the same diagram.

A parameterised type may restrict the types which may be used to instantiate it, by

including on its defining diagram a viewpoint of the parameter type itself. Any

instantiation must be a type for which this viewpoint is valid. For example, figure

12.24 extends the example with a viewpoint which requires the type X to provide an

infix ≤≤≤≤ operation, which has the normal axioms for a total ordering. The types Integer

or Number would be valid instantiations for X.

Node(Integer)
contents: Integer

SubNodeRootNode

child

parent

Figure 12.23 Instantiating a parameterised type in a viewpoint

Node(X)

SubNodeRootNode

child

parent

X

X ≤ X : Boolean
Invariants:

value
x≤x
(x≤y) ∧ (y≤x) ⇒ (x=y)
(x≤y) ∧ (y≤z) ⇒ (x≤z)
(x≤y) ∨ (y≤x)

contents

Figure 12.24 Restricting a type parameter

Note that this is the only case in which we allow the definition of a viewpoint on a

currently unknown type3.

3To allow this for object types in general would require a logic for testing conformance between arbitrary
statecharts. This might be desirable in the long term.

332 Encapsulation and reuse

12.5 Summary

• Encapsulation is a fundamental concept in object-oriented systems which

promotes reuse, simplifies system evolution, and assists reasoning about

concurrent systems.

• Our unit of encapsulation is the viewpoint, which defines the set of features of

one type which are accessible from another.

• Including a feature in a viewpoint is called exporting it.

• A viewpoint diagram focuses on one or more types and shows their access to

other types via viewpoints.

• A type can normally only access one viewpoint of another type.

• A viewpoint may define the access one instance of a type has of different

instances of the same type.

• A viewpoint on a sub-type may show features of the super-type as though they

belong to the sub-type.

• The sub-type/super-type relationship between two types is a separate feature

which may be omitted or included between viewpoints on those types.

• A sub-type can have two viewpoints on a super-type, defining access on the same

instance and different instances.

• Elements on the statechart are never exported.

• State sub-types are exported as a whole.

• Viewpoint diagrams need computerised tools to manipulate.

• Viewpoints and the types they are derived from live in a repository, which

provides the foundation for reuse of software components.

• Names in viewpoints may be substituted when they are imported into diagrams

as long as no two viewpoints on the same type appear in the same diagram with

different re-namings.

• Types may be parameterised on value types. The parameterisation may be

restricted by defining a viewpoint of the parameter type.

12.6 Bibliographic notes

Some of our ideas on encapsulation and parameterised types have been influenced

by the Eiffel programming language [Meyer92].

12.7 References

[Meyer92] B. Meyer. Eiffel: The language, Prentice-Hall, New York, 1992.

Part Five

The development
process

 337

CHAPTER 13

The development process

13.1 The process of software construction

A criticism frequently levelled at books on object-oriented method, and we fully expect

similar criticism for this work, is that they spend most of their pages discussing

techniques and notations and few describing how those techniques and notations are

used to manage software development projects. Without wishing to speak for other

authors, we offer an explanation for this apparent failing: the implicit message is that

techniques and notations need not be used as the basis for software project

management and control.

For all that has been written about the vision of software development as a

considered, deducible, ordered and, above all, repeatable process, we don’t see it that

way – at least, not yet. The key activities of designing software systems are creative

and chaotic, relying in the main on the skill, intuition and experience of individual

designers. A software system is, above all, a work of art; not fine art, since it is the

product of craftsmen rather than artists.

The introduction of new techniques, new ways of organising software and new

working practices is likely to change matters in the future. Although we are not

convinced that component-based software reuse will bring significant benefits as

quickly as many people claim, it is clearly a factor which, if carefully managed, could

make some aspects of software construction more routine. As important will be the

impact of standardised software architectures, giving designers a head-start by

providing proven frameworks for particular kinds of systems.

For the moment, though, we feel it necessary to separate clearly the design process

from the management process. The design process is the process by which the

designer’s skills are harnessed and directed. As befits a creative process, it cannot be

rigid and constraining. By contrast, the management process must be rigid and

disciplined because it is the basis for important commercial decisions, the kind of

decisions influenced entirely by logic not beauty, and underwritten by the root of

commerce: money.

338 The development process

We suggest that the design process uses the techniques described in the rest of this

book to develop an understanding of the problem and a suitable solution. It is a

targeted but not always predictable process, where the design grows over time. By

contrast, we suggest that the management process be based on cyclic, evolutionary

development and delivery, with a formal monitoring and reporting structure.

Formal, cyclic,
evolutionary,
management process

Informal, organic,
design process

Figure 13.1 Management and design processes

13.2 Management process

13.2.1 Systematic development

We call any software project managed with a clear and logical process a systematic

development. A systematic development must be planned, measured and controlled.

There have been many software management processes promoted in the past which

could justly claim to be systematic, and we do not take issue with that. Here we try to

show how a management process can still be systematic, even when divorced from

design techniques.

Conventional wisdom has it that progress in software development can and should

be measured in terms of the application of particular design techniques. For example,

many projects have milestones such as ‘50% of entity-relationship diagrams

completed’, or ‘75% of data-flow diagrams completed’, thereby coupling closely the

design techniques to the management of the project. Managing projects in this way

constrains the creativity of designers by forcing techniques, valuable in themselves, to

be used in a particular order.

Not all software projects have the same starting conditions. In some cases, the

specification for the software is completely given, often through existing standards.

This is common where the primary clients of the system are other machines. Many

 13.2 Management process 339

telecommunication switching systems are like this. In other cases it is extremely

unclear what the software needs to do, and part of the problem is establishing the

needs. Systems where the primary clients are people fall into this category: people

rarely know what they want. On the whole, software projects tend to be far less well

defined than most people admit.

We believe that software must be built incrementally, and that milestones should

measure completion of demonstrable software, not designs. The main reason for this is

that no other kind of milestone is really worth having. Designs can’t crash, so there is

no sure-fire way of knowing whether they are any good1. More importantly, in many

cases the only people who know whether a design will meet the needs will not be

computer-literate, and so won’t understand the design. Customers of software care

little or nothing for good design in itself, although they might care about the spin-offs

of good design, such as reduced life-time costs and better quality. Customers of

software care about the software itself, and they perceive only what they see by their

interaction with it. They care about when they get it, how much it costs, and how well

it fulfils the organisational need. These qualities are difficult to perceive by studying a

design specification, even for experts.

13.2.2 Software development organisation

The software factory

The development of software is not, as some authors have claimed, analogous to large-

scale industrial manufacturing, because software development is primarily an activity

of design, as opposed to replication. We might more usefully compare software

development with individual feats of design, such as the Apollo spacecraft or the

Channel Tunnel. These were possible only because they were underpinned by

engineering principles identified and systematised through many years of theoretical

research and empirical study. By analogy, software development must be underpinned

by software engineering, a discipline still in its infancy, whose impact on current

developments is extremely limited. Software development today relies almost entirely

on the skills of craftsmen, not engineers; craftsmen who have learnt their trade through

years of application and experimentation, typically through apprenticeship with other

craftsman.

This situation is slowly changing as we move towards standardised architectures for

different kinds of systems. The skills of the craftsman, focused on building from

scratch, are being replaced by those of the technician, skilled in assembly. For this

change to have much impact we must examine the way software development is

organised.

1But design models can be animated, particularly if they are well defined, like those described in this book. Proper
animation of design models might solve this problem: we would obtain a true assessment of the quality of a design
by executing it directly.

340 The development process

Software development is currently organised, and funded, around projects, which

bring together a team of people for a limited period so that a particular software system

can be constructed; indeed, much of this chapter makes the assumption that software

development will be organised like this. But we should challenge this assumption

because of the following:

• A software system is typically enhanced and modified throughout a long life-

time; there is no clear end point of development.

• The trend towards software component assembly implies a major shift in funding

towards the development of components, as opposed to systems.

• Rapid response to changing requirements is seen by many organisations as more

important than provision of rich functionality.

The ultimate goal of a software development organisation should be to establish an

environment where new requirements can be assimilated into the existing body of

software with as little effort as possible.

Team organisation

The traditional approach to software development, as taught in universities and

colleges in recent years, doesn’t seem to scale. By this we mean that the effort required

to complete a big software project is far in excess of twice the effort required for a

project half its size: effort increases faster than size. This is a direct consequence of

the non-linear increase in human communication channels that results from the

informal design process obligated by today’s level of knowledge. As our

understanding of software development grows, and the design techniques used

improve, we will be able to tackle larger projects with more confidence. We see the

improved powers of abstraction provided by software objects as an important part of

this change.

As Brooks [Brook75] noted many years ago, we cannot hope to deal with the

problems inherent in big projects merely by allocating to them a large number of

development staff. We must recognise that big projects, just like small ones, depend

for their success on the presence of a few highly skilled and experienced designers.

Therefore, we recommend that the critical design tasks of every project, irrespective of

size, be undertaken by a very small team.

We suggest that every development project be organised with a core team which

assumes primary responsibility for the project, and one or more development teams

which work as instructed by the core team. For smaller projects, the core team is also

the development team.

The core is made up as follows:

• Project Manager – Responsible for development planning, reporting and co-

ordination. One of the main jobs for the Project Manager is to ensure that the

Chief Designer and his/her colleagues are given full opportunity to do their work

and are not forced to spend hours ‘playing politics’.

 13.2 Management process 341

• Chief Designer – Ultimately responsible for making the thing work. Must

understand every aspect of the system and be comfortable with all the related

technology. Responsible for devising and keeping a vision of how the whole

thing will work. The Chief Designer will probably be the person who makes the

key design presentations to others.

• Designers (probably not more than two, possibly none) – Aides to the Chief

Designer.

• Project Administrator – Ensures project procedures are followed, gathers

metrics, collates and indexes documents.

It goes without saying that members of the core team must be exceptionally skilled and

motivated, since the success of the development rests entirely on their shoulders. The

core team designers are not just pen-pushers; they must be prepared to get their hands

dirty by building prototypes and working closely with development teams. In theory,

any one of the designers is sufficiently skilled that they could build, or learn how to

build, the entire system, given enough time. They are capable of grasping the design as

a whole, and reasoning about the global consequences of design decisions. Although

the same does not necessarily apply to the Project Manager, he/she must be capable of

reading and understanding program code.

The responsibilities of the core team are as follows:

• Take crucial design decisions.

• Establish system architecture.

• Set out global policies on things such as error handling.

• Verify system feasibility.

• Specify tools and techniques.

• Develop a plan for testing and integrating the development.

• Devise development team cycle plans.

• Co-ordinate integration of development team tasks.

In the early stages of the development the core team might be supplemented in two

ways: by technical specialists and by requirements researchers. During their early

investigations, where the aim is to establish feasibility and overall architecture, the core

team assigns specific tasks to the technical specialists. The requirements researchers

investigate the exact end-user requirements and feed these into the system

specifications.

The technical specialists are expert in some particular field, such as data

communications, hardware interfacing or databases. They might later join or lead

development teams to seed them with project-related experience.

Each development team must have an assigned leader, who is responsible for

ensuring that the team delivers as required. On larger projects, each development team

might have a part-time project manager, responsible for cycle planning and reporting.

342 The development process

Factors affecting risk

An important part of a project manager’s job is assessing and controlling risk. The risk

of a project is proportional to the levels of inexperience in a variety of areas:

• The people – Using a team that is inexperienced in software development

increases risk. To make matters more complicated, there is also a very large

difference in productivity between developers.

• The problem domain – If the members of the project team are not experienced

in the kind of problem being tackled the risk increases.

• The technology – Introducing new technology, such as object technology,

increases risk.

• The size – Large projects carry a greatly increased risk.

The effect of project size on risk is so marked that every effort should be made to split

large developments into several smaller ones. People often argue this can’t be done

with their development, for some reason or another, but this is rarely true.

Establishing system requirements

Broadly speaking, there are two kinds of system requirements: functional needs and

operational constraints. A functional need is a feature or facility that the system needs

to provide. An operational constraint is something that limits freedom of choice in

deciding how to provide the functional needs. A typical functional need might be the

need to produce a particular report. An operational constraint might limit how long the

report can take to produce or define a range of printers on which it must be producible.

Historically, the software industry has been much better at establishing functional

needs than operational constraints. Unfortunately, the operational constraints often

include many of the critical success factors.

Our contention is that, in the vast majority of cases, the full system requirements

will not become known until the software is provided to the users. We use this

contention to justify our recommendation of evolutionary development, as described

below.

System requirements should always be stated in a form that makes it easy to

determine whether they have been met. A requirement that the system should be

‘reliable’ is useless. We recommend you to the work of Tom Gilb in this area

[Gilb88].

Estimation

It shouldn’t come as any surprise that estimating the effort required for a software

development project is difficult. Consider the facts:

• Rarely, if ever, do we build the same system twice. The only organisations

known to the authors who produce reliable estimates are those which build

similar systems time and time again.

 13.2 Management process 343

• As an industry we regularly undertake development projects wildly different

from anything we or, in extreme cases, anyone has done before. Such adventures

into the unknown (frequently misadventures) are impossible to plan accurately.

• We often use different tools for each project. Experience and knowledge of the

tools to be used is vital for correct estimation.

Use of an evolutionary process allows costs to be managed even when estimation is

difficult or impossible. It allows the project manager to keep track of what has been

spent and what has been produced.

13.2.3 Recommended management process

Phases

The job of the designer is to produce a workable design but to do that he or she must

learn about the problem, the constraints, the tools, the people, and so on. Design is

very much a learning experience. You can never say, with any certainty ‘This part of

the design is finished; I don’t need to consider it any longer.’ We don’t think the

design process can be phased.

Therefore, we do not support the division of projects into analysis, design, coding,

integration, testing, etc. Instead, we identify three major development activities:

project preparation, construction and approval.

Preparation

Cyclic construction

Approval

Figure 13.2 Development activities

344 The development process

The overall order of work in a development project should be:

1. Preparation, involving (in no particular order):

• establishing the general scope of the project;

• agreeing the time and money constraints;

• identifying the personnel involved, including:

project sponsor: the person or organisation which controls the funding of

the project,

development staff,

user representatives, who may actually be users,

specialist support staff, including external consultants;

• establishing the critical success factors;

• checking project feasibility (possibly with prototypes);

• assessing risk;

• deciding on the development environment and tools;

• obtaining organisational commitment to the project;

• deciding on the documentation scheme to be used;

• opening the necessary channels of communication between all parties;

• production of preliminary design models;

• identification of sub-systems;

• design of overall system architecture (to some level);

• construction of prototypes;

• preparation of design documents;

• cycle planning.

2. Construction cycles, involving (in no particular order):

• constructing and refining design models;

• constructing prototypes;

• writing and testing code;

• document creation and update, including user documentation;

• integrating code;

• testing of integrated code;

• reviews.

3. Approval. Subsequent to the final cycle (or in parallel with other cycles for

phased approval) there must be a process of project approval. This involves (in

no particular order):

• formal acceptance of the system (including documentation) by the users;

• installation;

• training of users;

• post-development review by developers (including the production of a

report).

Although the project preparation activity is largely the responsibility of the core team,

we must take account of any overriding learning objectives. With an inexperienced

development team, or a team with widely varying experience, we may wish to involve

 13.2 Management process 345

many more people in the project preparation tasks. This will inevitably reduce

productivity rather than improve it, and thus lengthen the project preparation stage, but,

depending on circumstances, we may accept that penalty in return for the learning

benefits.

Evolution and cycles

Our development philosophy is one of cyclic development. For any project of

significant size, we consider it impractical to determine at the outset exactly what order

development should take and exactly what the focus of attention at any point in the

development should be. With cyclic development we set out to build a regular

succession of working functional subsets of the system. This approach allows progress

towards delivered functionality to be assessed, rather than progress against a theoretical

plan. It allows the development team to respond rapidly to problems and opportunities

that arise during the development process.

The system evolves through cycles. Cyclic development requires feedback from the

appropriate parties at the end of each cycle. This feedback may necessitate rework to

ensure the system best meets the needs of its users. There must be user representatives

as part of the project team who can approve, from time to time, the direction being

taken. User representatives should review progress at least at the end of each cycle.

The development of a software system is rarely ‘finished’. Instead, development

stops when a system good enough for the purpose has been created. This will be at the

end of some cycle. The project is planned to last for a certain length of time, translated

into a number of cycles. Development may stop before the end of this time because the

sponsor doesn’t wish to spend more money, but it should certainly stop at that time. If,

as a result of incorrect estimation or the extra effort required for rework, there is

insufficient time to deliver all desired functions, some will have to be omitted. This

should become clear well before the end of the planned duration. In nearly every case

the system is still useful without some of its features and an additional project can, if

required, be defined to add those features that are still desired.

In cyclic development, the project is divided into cycles of work, where each cycle

advances the development activity. Each cycle has specified objectives and a fixed

length. During the cycle, developers build software, using the results of the preceding

cycle as their base. At the end of the cycle the cycle products are integrated with the

results of the previous cycle to produce a new system. During the cycle review this

new system is approved as the base for the next cycle. Any work not completed at the

end of a cycle must be re-scheduled for a later cycle. The cycle products integrated

into the new system need to be production quality; that is, they must meet standards,

have the right documentation and have been tested to the prescribed level. They do not

have to be ‘perfect’. The cycle review may identify errors in specification or

construction that must be fixed during later cycles but need not prevent the software

becoming an integrated part of the system. If the cycle products are clearly unsuitable,

either because their reliability is so poor that they would impede progress in the next

cycle, or because they fail to address the requirements adequately, there must be no

hesitation in discarding them.

346 The development process

The overall scheme for cyclic development is shown in figure 13.3.

Produce
initial

workplan

Specify
objectives for

first cycle

Design S/W
to meet

objectives

Write code

Integrate
code and test

Review new
system

Agree next
cycle

objectives

Cycle Activities

Define and revise
objectives for
other cycles

developers
start here

project managers
start here

Figure 13.3 Cyclic development

The formality with which the cycle process is applied will depend on the size of the

project, the experience of the developers and the organisation’s culture.

Cycle length

Ideal cycle length depends on the tools being used and the stage of development of the

project. Every cycle has fixed overheads: the time taken to agree objectives and to

review results. If the cycles are too short, these overheads become too large a

proportion of the available development time and productivity suffers. If the cycles are

too long, so much development may be done during a cycle that there is a reluctance to

discard cycle products when they prove not to meet requirements and, if they are

discarded, developer morale suffers. Projects using powerful development tools can

have shorter cycles because more real development will be finished in a shorter time.

It may be wise to increase cycle length as the project proceeds. In the early cycles there

will be many unknowns and the risk of producing unsuitable cycle products is higher.

Our experience suggests that the minimum cycle length for any project involving

more than two developers is two weeks. When there are only two developers the

process is invariably less formal and cycles may be of only a few days. For large

projects the cycle length, particularly towards the end of a project, may be many

months. A typical project plan for a nine-month project might be as shown in

figure 13.4.

 13.3 Design process 347

1 5 10 15 20 25 30 35

Preparation Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Approval

Figure 13.4 A typical project plan

Cycle objectives and priorities

Every cycle must have clear objectives and a work plan, both captured in a cycle plan

document. It must be easy to discern whether the cycle objectives have been met. This

implies careful cycle planning and specification. Experience suggests that cycle

planning and specification require considerable resources.

It is impossible to make hard-and-fast rules about how work should be allocated to

cycles, but we have found by experience that an objective of an early cycle should be to

prove the viability of the project by constructing a version of the system which covers

the full breadth (but not depth) of activity: it should show that stimuli can be detected

and responses generated.

The nature of cyclic development requires that the priorities assigned by the user to

various features be well understood by the developers. The project manager must take

these priorities into account when planning cycles and when dealing with problems that

occur during a cycle.

13.3 Design process

13.3.1 Systematic design

Our aim in devising a management process is to provide systematic development. A

similar goal for design is to perform systematic design. In this section we examine the

issues affecting the design process and show that systematic design is not always a

reasonable objective.

Since the management process described above calls for the production of new

executable code every few weeks or months you might well ask ‘What’s the point of

building abstract design models; I might as well just write the code. I’ll soon find out

if I got it wrong.’ As time-served programmers, we have done just that ourselves at

times in the past, and can readily understand this view: but long experience tells us

that, although superficially attractive, this way of working almost inevitably leads to

poorly structured and unmaintainable code.

Even so, it is true that experienced designers, good at manipulating abstract

concepts and working alone, can often construct very complex design models in their

heads, and transform them directly into code. The design techniques described in this

book embody some important design principles, and their purpose is to facilitate the

application of those principles. Experienced designers who have a sound grasp of

those principles can, and frequently do, bypass the actual techniques and associated

notations while still remaining loyal to the principles themselves. We claim that an

348 The development process

understanding of the techniques, and thus of the underlying principles, will improve

your ability as a designer whether or not you use the techniques rigorously.

Having said that, we must strongly defend the use of design techniques to capture

design intent explicitly. Implementation languages such as Smalltalk and C++ do not

allow design intentions to be fully expressed. Important design concepts, particularly

associations and invariants, must be diluted for implementation in these languages, and

no amount of systematic ‘reverse engineering’ will ever recover the full design intent

without intervention from a designer. The techniques described in this book allow the

design intent to be captured and reasoned about by a single designer or a whole team.

Very rarely is it acceptable for the design intent to be lost, as it inevitably must be if it

is never captured.

Also, systematic design implies the use of design techniques which allow

consideration of the design at various levels of abstraction. Systematic design requires

conscious and deliberate design; it requires that the executable software be a

consequence of the design models and their evolution, and not the other way around.

With systematic design, the primary representation of the software is the design

models, not, for example, a collection of C++ source-code files2. Systematic design

requires the designers to take account of all the issues and address them up front.

Waterfall-style development, where a ‘complete’ design is produced before coding

begins, is compatible with our notion of systematic design but incompatible with our

management philosophy. A design does not have to be done all at once to be

systematic; the designers must merely understand what they are doing and recognise

(and record) what is being left out. To be systematic, each piece of executable

software must be the result of design.

Producing design models that address all the issues, as required for systematic

design, will take time, and designers will be forced to commit to design decisions, to

make choices. There must be some way to validate these choices: either the design

team has that freedom itself or it must validate them with others who have it, such as

the users’ representative. In every project it will be impossible to validate all these

choices without constructing executable code and running it.

We have observed the following reasons for this:

(a) A genuine lack of understanding about the ‘right’ solution to a problem – the

problem represents a new or different challenge where it is impossible to

validate alternatives before ‘seeing them in action’.

(b) A lack of creative ability in the designers – the designers do not know how to

formulate the right questions or decide on possible answers.

(c) A lack of intellectual skills in the designers – the designers are unable to

manipulate or reason about abstract concepts.

(d) A lack of organisational commitment to design – the organisation has a belief

that time spent not writing code is time wasted.

2This implies a need for very sophisticated design support tools.

 13.3 Design process 349

(e) A lack of commitment to the project by the potential users or the organisation as

a whole – the project is not motivated by a real organisational need and so the

people who could validate decisions will react only to demonstrable software

and will not, or cannot, make the extra effort required to examine a design

model.

If (e) prevails it is probably unwise to continue the project because, unless the situation

changes, it cannot be successful. For the remainder of the above list, the immediate

way out of the predicament is to build some software using a series of informed

guesses. With some running software available to focus minds, decisions are

frequently much easier. The least sophisticated of users (or designers) can usually look

at a piece of running software and say ‘that’s what I want’ or ‘it would be better if…’.

The real dilemma, and the key issue in systematic design, is how to use the

information gained by writing the software. There are two possibilities, as follows:

1. Treat the software as a baseline and enhance it, using the principle of

evolutionary development, into second and subsequent versions, and, ultimately,

into the final system. This approach has become very popular recently, under

names such as incremental prototyping.

2. Treat the software as a disposable prototype and add the information gained to a

knowledge-base that captures design policy decisions. The prototype might still

be enhanced to answer further questions but it never becomes the basis for the

‘real’ system. The ‘real’ system will be an implementation of the knowledge-

base, ideally built using the principle of evolutionary development, probably in

parallel with ongoing prototyping. We will call this approach dual-track design.

Both can be made to work but you need to decide which option you are following

before building the initial software. With incremental prototyping, the initial software

must be production quality because it will become part of the final system. We can

therefore assume that it will take longer to build than in the second approach, where, as

a prototype, it need not be production quality.

Both approaches have risks. Incremental prototyping poses the major risk that

successive evolutions will undermine or distort the design basis, leading to a poor

quality solution even if the initial design was sound. Another risk with this approach is

that inadequate design documentation will be produced, making it even more difficult

to rectify emergent failings in the original design. The major risk with dual-track

design is that the ‘real’ system will never be built, and the undocumented and

insupportable prototype will become, as a result of organisational pressure, the de facto

‘real’ system.

If the degree of uncertainty about design choices is small, and thus the prototypes

are also small and built infrequently, dual-track design is by far the best. Small

prototypes, each covering only a small part of the system, are unlikely to be forced to

become the final system. But dual-track design is viable only if the reason prototypes

350 The development process

are being constructed is (a) in the list above (a lack of understanding about the right

solution); the designers must have the necessary creative and intellectual abilities and

there must be organisational support for design.

When the degree of uncertainty is large, and thus it is necessary to prototype most

parts of the system, incremental prototyping wins out, not because it is conceptually

better but because it is viable; in such cases it takes a very disciplined organisation to

follow the dual-track approach3. Incremental prototyping is also the only viable option

when designers lack the necessary skills or the organisation is not committed to design.

We seem to be suggesting that incremental prototyping is incompatible with

systematic design. It need not be so. The design for each evolution of the prototype

can be carefully integrated into a consistent design model, and the code then brought

into line with this new model. But all too often the ultimate reference point for the

project is the software not the design model; the software drives the design model and

not the other way around4. Then incremental prototyping is not systematic design.

Conversely, following the dual-track approach does not necessarily guarantee

systematic design, although it is much more likely.

Systematic design is demanding. It requires a high level of maturity and intellectual

ability in the designers, and a strongly supportive organisational culture. It is time-

consuming and painstaking. The pay-back comes in the long-term, with reduced costs

over the life-time of the software.

The simple fact is that for many, perhaps most, projects the ability or desire to be

systematic does not exist, and no amount of hand-wringing will change this. Such

projects will be designed in a piecemeal, ad hoc, fashion and are unlikely to want to

utilise the full depth and formality of the techniques presented in this book. We

recognise and accept this. Software built without systematic design in a reasonable

time is either the work of exceptionally gifted designers, who need no help from design

techniques anyway, or is, by implication, uncomplicated. Uncomplicated software is

increasingly built using high-level tools by relatively unskilled practitioners. We offer

the depth and formality of our techniques to satisfy the needs of systematic designers

building complex software.

The choice of approach affects the way in which design techniques are used on the

project. For projects following systematic design, the full range and depth of design

techniques are applicable and appropriate. For projects unable to be designed

systematically, the extent to which design techniques can be used for forward planning

is limited, but, depending on organisational culture, they might be used to record what

was done, after the event. In these circumstances we may choose to restrict the choice

of techniques and limit their complexity by, for example, omitting the use of

mathematical constraints and specifications.

3Although we might reflect on Brooks’ remark: ‘Plan to build one and throw it away – you will anyway’.

4This argument disappears if the software and the design model are the same, as they would be if, for example, the
design models were directly executable.

 13.3 Design process 351

13.3.2 Techniques

A designer needs three things: a set of techniques to help tackle issues in the design; a

set of notations to capture the design and communicate it to others; and guidance on

what to do next when stuck. The notations used in this book serve the second of these,

although we must consider the extent of their use. The other two areas we will try to

deal with here.

Lots of techniques have already been described in this book, such as structural and

state modelling. These techniques are there to be used as and when the designer

wishes. They are the set of intellectual tools in his or her box, to be pulled out and

applied at the right moment. All the techniques will not always be used during a single

development project; it is a matter of selecting the right ones for the job.

Techniques satisfy needs; we can formulate some questions that might arise during

a software project and see which techniques might help in each case (see table 13.1).

The techniques mentioned in the table are not separate or necessarily at the same level

of abstraction. For example, building an implementation model implies using the type

view, state view and mechanism techniques, to some extent at least.

Fitting techniques to the problem

In this book we have set out three different modelling perspectives: essential,

specification and implementation. We do not intend to imply that all three are vital to

every software development project, nor that the order of their construction, if used,

must be in the order presented in this book. Indeed, it is our strong opinion that all

three models can, to some degree, be built and enhanced together, as a set. The

utilisation of the different models depends on the situation faced by the designer. Here

we consider four possible situations and suggest how to tackle them.

We are a bank and we have a complex business process for dealing with

mortgage payment arrears. This process involves many people and departments,

many forms, many decisions and many different stimuli and responses. We want

to computerise all or part of the process to reduce our staff level and to deal with

arrears more effectively.

The first thing to note here is that the problem to be solved has already been defined.

The business goals are to reduce staff level and to deal with arrears more effectively –

presumably this means faster or with better consultation with the borrower. Our

techniques can help by providing behavioural descriptions of situations but they say

nothing about how to determine the business goals. Much can, and has, been said by

others about this; for instance by [Wilso84]. With this proviso, it seems clear the first

thing to do in this situation is to produce an essential model, which will capture the

current or desired behaviour for arrears processing and provide a vocabulary and

structure within which decisions about computerisation can be made.

352 The development process

How can I understand the problem better? Build an essential model

How can I explore the problem without pre-

judging the boundary between the software and

the other parts of the system?

Build an essential model

How can I specify the required behaviour of the

software without having to consider

implementation details?

Build a specification model

How can I specify fully, but abstractly, the

boundary between the software and its

environment?

Build a specification model

How can I deal with implementation issues,

such as concurrency, in an abstract, language-

independent, way?

Build an implementation model

How can I find likely kinds of objects given a

textual description of a problem?

Perform a textual analysis

How can I find likely kinds of objects given

only the events that occur in the situation?

Look for the event parameters

How can I explore the design of a solution

informally, in a group?

Run a CRC workshop (see

appendix C)

How can I find out if the proposed user-interface

is acceptable?

Build a prototype

How can I ensure my computation algorithms

are fast enough?

Build a prototype

How can I check my understanding of the

hardware?

Build a prototype

How can I ensure my design will work? You can’t, so implement part of

it and check

How can I determine the required interfaces of

my objects?

Construct mechanisms

How can I explore the structure of my design? Draw type views

How can I explore the dynamics of my system in

a formal manner?

Draw state views

How can I explain the structure of my design? Draw object diagrams

How can I formalise the inputs and outputs of

my system?

Construct an event table

How can I explore the external event–response

behaviour of my software?

Construct event scenarios

How can I partition my design? Consider domains and

responsibilities

Table 13.1 Matching techniques to needs

 13.3 Design process 353

Once these decisions have been made, and again we offer no techniques for making

these decisions, the boundary between the software and its environment can be

formalised in a specification model. It may then be necessary to revise the essential

model to reflect the needs of the software5. An implementation model based on the

specification model can be developed, probably in parallel with the specification

model.

Essential modelling

Specification modelling

Implementation modelling

Time

Figure 13.5 Activities in the bank example

This represents the archetypal design process, as illustrated in figure 13.5. Our

experience in practice is that these situations occur less frequently than you might

imagine, and, when they do, the needs and desires of the potential users of the software

are so poorly understood that there is no realistic alternative but to rely heavily on

prototyping.

We are a telecommunications company and we want to build a network switch

and network monitor in accordance with CCITT standards.

Here there is little doubt about the boundary between the software and its environment:

it is mostly given by the standards. The major task is to specify the behaviour of the

software when it receives stimuli. Therefore, the first activity is to begin an

specification model and to use that model to drive the production of an implementation

model, as shown in figure 13.6.

In the absence of powerful support tools, the designers might decide to move

straight from the specification model to the code. This would mean having to deal

with all the implementation issues, such as concurrency, at the level of the code,

without the help provided by the abstraction of the implementation model.

Alternatively, the designers might omit the specification model, and go straight to the

implementation model. We think this is less satisfactory because the abstraction

provided by the specification model is very useful.

5In this analysis we have taken no account of possible pre-existing design patterns or frameworks. In many cases it
may be better to revise needs to fit the existing designs, rather than invent new ones. Such revisions will increase
the likelihood of needing to alter the essential model.

354 The development process

Specification modelling

Implementation modelling

Time

Figure 13.6 Activities in the telecommunications example

We are a development software products company and we want to develop a

user-interface class library to support the development of complex GUI

applications, using a variety of operating systems and hardware.

A major problem for this company is going to be explaining to their customers how to

use the class library. Design models can help. A specification model will provide an

abstract explanation of structure and behaviour, showing the software’s response to

events. An implementation model will show how the library is arranged and illustrate

patterns of usage. Ideally, the company should supply machine-readable design models

with their library6.

We are an insurance company and we want to understand better the activities we

perform in dealing with insurance claims.

The important question here is ‘why?’. It would be possible to construct an essential

model as a behavioural description of the business process but this will not directly

help to answer questions about the business goals. Although essential models can

clearly be used to support business process modelling, without any intention to produce

software subsequently, we don’t promote them for that purpose. We consider them an

aid to the process of software development and not an end in themselves. If our

techniques are to be used in this situation, then we can only assume the construction of

an essential model, as in figure 13.7.

Essential modelling

Time

Figure 13.7 Activities in the insurance example

6This trend has already begun.

 13.4 Tools 355

The relationship between techniques and project stages

There is no fixed relationship between the design techniques and the project stages.

Typically, we might expect preliminary essential and specification models to be

produced during the preparation stage. These models would then be refined during

construction cycles, along with the implementation model.

Mechanisms versus statecharts

Mechanisms in the implementation model show sequences of messages in particular

scenarios. The set of statecharts for the types involved in a mechanism can capture

exactly the same information, in its generic form. What should we conclude about the

order in which these techniques are used?

All our experience of object-oriented design points to mechanisms as the single

most powerful technique for deciding exactly how a system will work. There is

nothing to equal mechanisms to understand the end-to-end flow of control when a

stimulus occurs. Producing a mechanism can ensure that an appropriate interface is

defined for every affected part of the system; in particular, they allow domain boundary

interfaces to be established and checked. Mechanisms make an excellent base for a

debate between separate teams over the correct interfaces between their sub-systems.

So we suggest that mechanisms be used by designers to drive the design forward, to

force the formalisation of object interfaces. They are also invaluable for explaining

how the system works. Statecharts capture a family of mechanisms because, if used

fully, they can explain the message sequence in every possible state. That gives them a

completeness which mechanisms can never attain but it makes them less useful as a

technique for focusing on one particular sequence. To understand an end-to-end flow

we need to consider and inter-relate a set of statecharts – not a trivial undertaking.

Mechanisms and statecharts should be used together, capitalising on the strengths of

each. Good tools should allow information captured using one technique to appear in

views of the other.

We should also note that mechanisms are natural test cases; the logic for choosing

which mechanisms are important is exactly the same as the logic for selecting test

cases. This points to a possible use for mechanisms in the definition of test plans.

13.4 Tools

The availability of tools is a limiting factor in following the principles of systematic

design because tools are needed to synchronise the executable software with the design

models. Ideally, they are one and the same.

All three model interpretations described in this book could be executed, or at least,

simulated. A simulation of the essential model would keep the state of the simulation

in line with a stream of events fed to it and would detect and reject invalid event

sequences. A specification model could be executed in a similar way, with a stream of

input events producing a stream of output events. An implementation model could be

the lowest level of abstraction required, its direct execution being the final result of a

356 The development process

development project. We have specifically defined the implementation model so that

this might be possible in the future7.

Assuming that design models will not be executed directly, tools to support design

must be closely integrated with the development environment for the chosen

implementation language; if they are not it will be very difficult to keep the design

models in step with the code. Integration with development environments also enables

designs to be explored interactively by setting up simple experiments that exercise the

code associated with the design. Tools which provide animated visualisations of

designs will play an important role in the future.

The precision inherent in the notations presented in this book provides the potential

for tools with very considerable checking capabilities. These tools can go much further

than cross-checking names; the inclusion of logical inferencing will allow

sophisticated checking of semantic integrity.

But tools don’t have to be that clever (and expensive) to be useful. Informal tools

that support the various views and provide simple syntactic checks, perhaps also with

hyper-text-like links between arbitrary design elements to support traceability, can go a

long way towards managing and assisting comprehension of a complex design.

Tools, like methods, should be aids not masters. They should give the designers

flexibility and not constrain them. They should enforce syntax but not prevent invalid

or incomplete diagrams from being drawn; they should, unobtrusively or when asked,

point out inconsistencies and omissions.

We need to consider carefully whether tools being built to support object design

methods are themselves true to the spirit of object technology. All too often design

support tools are monolithic and try to expropriate to themselves the entire process of

software development. Tools should be built as flexible components which can be

assembled into an environment suitable for a given project. The components must

inter-operate with other elements of the developer’s computer system; for example, it

should be possible to embed representations of design models into documents. It

should be perfectly possible to treat your word-processor as the top-level support tool,

with links to specialised design tool components.

The range of tool components required is vast. Amongst others, we need tools to

support development standards, testing, shared reuse repositories and configuration

management of all design elements (not just the code).

13.5 Completeness versus usefulness

In this book we have tried to position design as the central activity in software

development. We have tried to show that it is possible to construct precise design

models at various levels of abstraction, including models that come close to being –

and perhaps are – complete descriptions of implementation behaviour. The time has

7But note our comments in the next section on completeness.

 13.5 Completeness versus usefulness 357

come to consider whether it is appropriate and useful to build models that even

approach the level of completeness we have suggested.

Producing a complete implementation model, with full statecharts showing all inter-

object message sending, takes a considerable time. In the absence of tools to execute

such models directly, we must decide whether it is worth spending that time when it is

inevitable that another model at roughly the same level of abstraction will be produced

in some other language, such as C++ or Smalltalk. These languages are complex in

their own right and, when coupled with the complexity of operating system interfaces

and so on, the result must be a significant proportion of the developer’s time spent on

realising an implementation.

Given the tools available at the time of writing in 1994, it is our contention that

completeness is not often a reasonable goal in software design. For any system of

moderate complexity, a complete design specification (complete in the sense that it

leaves nothing unsaid) would take too long to create and be of limited use since it

cannot be executed. At heart, software development is actually about building

executable systems, systems that work and are useful. We believe, and the evidence

supports this view, that as soon as the system being built exceeds the trivial, any time

spent on analysis and design activities is repaid during coding and subsequent system

extension. But this does not imply that analysis and design must be exhaustive.

It is, of course, a trade-off. If we were to plot the total effort expended on a

development project against the percentage of that time spent on analysis and design,

we predict that the graph would be like the one shown in figure 13.8 (not to scale).

Although the shape of the curve will vary, according to such factors as the expected

life-time of the software and the organisational culture, we think the principle is sound:

there comes a point where spending extra time on analysis and design just cannot be

justified. It is probably impossible to say where that point is without detailed

consideration of the project in hand. From our own experience we know that this point

is frequently exceeded.

Completeness and usefulness are not related. A few, scruffy diagrams showing the

basis of operation of a system are frequently life-savers. The best guideline we can

give is this: if you reach a point where you believe, on the basis of some real

experience, that, given the current state of knowledge, the software can be completed

in a satisfactory way, and that the amalgamation of the software with the analysis and

design documents produced so far is sufficient to allow the system to be repaired and

enhanced, don’t spend any more time on your design models.

Hopefully, in time the software industry will develop tools that allow efficient

execution of specifications. But even in 1994, we believe that a deep understanding of

the design principles described in this book will empower designers to produce more

elegant systems, and that the rigorous notations will provide a mode of communication

between designers.

358 The development process

Percentage of time spent on analysis and design

Total

effort

100%

Figure 13.8 The effort/design trade-off

13.6 Summary

• At present, software design is a creative and chaotic process performed by skilled

and experienced craftsmen.

• It is necessary to separate clearly the software management process from the

software design process, so that designers are not constrained by the formality

needed by managers.

• The management process must be rigid and disciplined but not based on

measurement of the use of design techniques.

• The management process should establish milestones that correspond to the

delivery of functioning code and achieve them in a series of evolutionary cycles.

• The ultimate goal of a software development organisation must be to establish an

environment that reacts to changes in need by accommodating the need within

the existing software framework, rather than meeting each set of needs with a

separate project.

• Every development should have a small core team consisting of a project

manager, a chief designer, assistant designers and a project administrator. The

core team takes full technical responsibility for the development.

• There are three major development activities: project preparation, construction

and approval.

• The design process has as its aim systematic design, a condition where the code

is at all times a consequence of the design models, and not the other way around.

• It is inevitable that some design decisions can be made only by experimentation

with implementations. The issue is how these experiments, or prototypes, are

incorporated into the development process.

• We discuss two approaches: incremental prototyping, where each experiment is

part of the system being developed, and dual-track design, where the results of

the experiments are input to the design of the final system.

• Neither approach guarantees systematic design, although dual-track design is

more likely to provide it.

 13.8 References 359

• For many projects, the aim of systematic design is not achievable. These projects

are unlikely to want to take full advantage of complex design techniques.

• Different kinds of development require different application of techniques; not

all techniques will be used on a single project.

• Systematic design requires powerful tools.

• Completeness of design models is not always a reasonable or useful goal.

13.7 Bibliographic notes

Much has been written on cyclic and iterative development processes; of particular

relevance is the work of Boehm [Boehm88].

Given our views on the tension between creativity and rigorous method, we refer the

reader to the paper by Parnas and Clements on faking a rational process [Parna86].

13.8 References

[Boehm88] B.W. Boehm. A spiral model of software development and enhancement. IEEE Computer,

May 1988.

[Brook75] F.P. Brooks. The Mythical Man-month: Essays on software engineering, Addison-Wesley,

Reading, Massachusetts, 1975.

[Gilb88] T. Gilb. Principles of Software Engineering Management, Addison-Wesley, Wokingham,

England, 1988.

[Parna86] D.L. Parnas and P.C. Clements. A rational design process: How and why to fake it, IEEE

Transactions on Software Engineering 12/2, February 1986.

[Wilso84] B. Wilson. Systems: Concepts, methodologies, and applications, John Wiley & Sons,

Chichester, 1984.

 361

APPENDIX A

Summary of notation

A.1 Type views

A.1.1 Basic notation

Company

Manufacturer

turnover : Number

prodLevel : Number

employeeemployer

Person

Employment

salary : Number
startDate : Date

name : String
income : Number

Supplier

name : String

startDate: Date

A type

Type name

Properties

An association

Multiplicity constraint
(zero or more)

Role name
(optional, default is
adjacent type name with
lower-case first letter)

Type extension

Super-type

Sub-type

Association
property

Type linked to
association

Registration
Office

address : StringInitial type

Bottle

capacity : Number
content : Number

Invariants:
const capacity

Creation:
(Number)

Empty

Full

Sealed

State types

Invariant

Creation
operation

362 Summary of notation

A.1.2 Associations

Company Personemployer

employee

Company Person
employer

employee

An association can be thought of as a pair of unidirectional associations, each with a

source and a destination type.

Table of association multiplicity adornments:

Symbol Name Placement Meaning Restrictions

<none> Single Destination Constrains multiplicity of the

destination to be exactly

one. Navigating the

association yields an object

of the destination type

Exclusive with Multiple

and Optional

� Multiple Destination Constrains multiplicity of the

destination to be zero or

more. Navigating the

association yields a

collection of objects of the

destination type

Exclusive with Single

and Optional

� Optional Destination Constrains multiplicity of the

destination to be zero or

one. Navigating the

association yields an object

of the destination type or nil

Exclusive with Single

and Multiple

[m..n] Range Destination Constrains multiplicity of the

destination to be in range m

to n

Used only with

Multiple

[m] Range Destination Constrains multiplicity of the

destination to equal m

Used only with

Multiple

[m+] Range Destination Constrains multiplicity of the

destination to be in range m

to infinity

Used only with

Multiple

 A.1 Type views 363

Table of ordering adornments:

Symbol Name Placement Meaning Restrictions

<none> Set Destination Defines the destination

collection to be unordered,

with no duplicates

Used only with

Multiple

[bag] Bag Destination Defines the destination

collection to be unordered,

but with duplicates allowed

Used only with

Multiple

[seq] Sequence Destination Defines the destination

collection to be ordered

Used only with

Multiple

[...] Sorted Destination Defines the destination

collection to be sorted

according to some predicate.

A rigorous predicate has the

form:

[a, b: Type; expression]

where a comes before b if

the expression is true

Used only with

Multiple

Table of other adornments:

Symbol Name Placement Meaning Restrictions

q(T)

Qualifier Source Defines a function, q, that

selects from a multiple

association using a

parameter of type T. The

destination can still be

multiple, indicating that the

parameter selects more than

one object

Normally replaces a

multiple. If the

function is not total

over T, the destination

should be optional

◊ Aggregation Source Fixes source membership of

an association for the life-

time of the destination. The

life-time of the destination is

contained within the life-time

of the source. If the source

is destroyed, the destination

is destroyed

/ Derived Anywhere on

line, going

across it

This association is logically

derivable from others.

Normally accompanied by a

derivation expression

→ Visible Destination,

with

arrowhead on

line

The association is definitely

navigable from the source to

the destination

Implementation model

only

364 Summary of notation

Symbol Name Placement Meaning Restrictions

? Undefined Destination The association from source

to destination is not fully

defined

No other adornments

allowed for this

direction

X Blocked Destination The association is not

navigable from source to

destination

No other adornments

allowed for this

direction

A.1.3 Special invariants

The table below gives details of the special invariants that can appear in type boxes:

Invariant Meaning

abstract There can be no objects that conform to this type without

also conforming to a sub-type of this type

const property The value of this property is fixed throughout the life-time of

each object conforming to this type

optional property This property can take the value nil.

sync This type provides the non-exclusive contract with clients,

and so guarantees not to raise wrongState exceptions, but

may block callers. (Implementation model only)

unique property The value of this property will be different for every object

in the model conforming to this type

value This type is a value type, and so can have no navigable

associations coming from it

A.1.4 Constraints between associations

Constraints between associations are shown by drawing a dashed or faint arrow.

Constraint Meaning

[subset of]

The membership of the destination association at the tail of

the arrow is a subset of the membership of the destination

association at the head of the arrow. The linked

associations must have a common source

[member of]

Equivalent to subset of but used when the association at

the tail of the arrow identifies a single object

[redefines]

The association at the tail of the arrow is redefining the

inherited association at the head

 A.2 Object diagrams and mechanisms 365

A.1.5 Specification models

In specification models, the type names shown in type boxes in type views have a -S

suffix.

A.1.6 Implementation models

In implementation models, the type names shown in type boxes in type views have a -I

suffix.

Implementation model type views do not show properties in type boxes. Instead,

type boxes may have two headings, Observers: and Updaters:, under which operations

provided by the type are listed.

Synchronising types have another heading, Sync:, where expressions controlling the

availability of operations are listed. A synchronising expression has the general form:

 message ⇐⇐⇐⇐ logical expression.

A.2 Object diagrams and mechanisms

Object diagrams and mechanisms share the same basic notation, consisting of objects

and links.

(Company)
turnover = 2000

C1

(Person)
name = ‘Jane’

(Company)
turnover = 0

C2

Object

Most specific
type to which
object conforms

Value of property

Symbolic name
given to this
object in the
diagram

Link, or instance
of association

Link created during
mechanism

Role name

employer
salary = 20000

Association
property

In mechanisms, links are annotated with separate arrows and legends to show which

messages are sent and the order of sending.

366 Summary of notation

(2.1.4) r := doIt(p, q) : s

Message-sequence
number

Assignment of
message result to a
name in the name-
space of the sender

Message name

Parameters, taken
from the name-
space of the sender

Expression indicating how
the result is determined,
using names from the name-
space of the receiver

A message
being sent in
this direction

A.3 Statecharts

A.3.1 Basic notation

InProgress

Bottle

Empty Full
fill

Sealedcap

Broken
break

reset

break Leaking

drain

Type name
State

TransitionInitial state arrow

Body part

Textual part

State with
nested states

Invariants:
contents < capacity

State with invariant

Bottle

Empty

Full

squirt squirt

pack

Stopped

Moving

clamp
unclamp

Sealed

cap

squirt

Orthogonal state machines

Finalisation state Each machine may have its own
textual part or share with others

 A.3 Statecharts 367

A.3.2 Essential models

Table showing the permitted section headings in the textual parts of states:

Textual part headings Placement Use

Events: Outermost state only List of events of interest to objects of this type

Creation: Outermost state only List of creation operations

Variables: Any state List of statechart variables

Allow: Any state List of events allowed in this state and any

enclosed states

Invariants: Any state except

outermost state

List of predicates that are true in this state

Syntax for transitions (note that the ‘/’ is optional if there are no post-conditions):

event (formal param names) [guards] / [post-conds]

mandatory only those mentioned in

rest of transition

optional optional

Syntax for entries in the event list:

event (formal param names & types) [filters]) [pre-conds] / [post-conds]

mandatory mandatory optional optional optional

A.3.3 Specification models

Type names appearing as titles in specification model statecharts are given a -S suffix.

Table showing the permitted section headings in the textual parts of states:

Textual part headings Placement Use

Events: Outermost state only List of events of interest to objects of this type

Generations: Outermost state only List of events (together with their signatures)

generated by objects of this type

Entry: Any state except

outermost state

List of events to be generated on entry to this

state

Exit: Any state except

outermost state

List of events to be generated on exit from

this state

Creation: Outermost state only List of creation operations

Variables: Any state List of statechart variables

Allow: Any state List of events allowed in this state and any

enclosed states

Invariants: Any state except

outermost state

List of predicates that are true in this state

368 Summary of notation

Syntax for transitions:

event (formal param names) [guards] / [post-conds] gens

mandatory only those mentioned in

rest of transition

optional optional optional

Syntax for entries in the event list:

event (formal param names & types) [filters]) [pre-conds] / [post-conds] gens

mandatory mandatory optional optional optional optional

For guards, filters and pre-conditions:

 [a] [b] ≡≡≡≡ [a ∨∨∨∨ b].

For post-conditions:

 [a] [b] ≡≡≡≡ [a ∧∧∧∧ b].

A.3.4 Implementation models

Type names appearing as titles in implementation model statecharts are given a -I

suffix.

Table showing the permitted section headings in the textual parts of states:

Textual part headings Placement Use

Updaters: Outermost state only List of updater messages for which extra

information (such as post-conditions) is

specified in the list

Entry: Any state except

outermost state

List of messages to be sent on entry to this

state

Exit: Any state except

outermost state

List of messages to be sent on exit from this

state

Creation: Outermost state only List of creation operations

Variables: Any state List of statechart variables

Exceptions: Outermost state only List of exceptions raised or handled by

objects of this type

Allow: Any state List of messages allowed in this state and any

enclosed states

Invariants: Any state except

outermost state

List of predicates that are true in this state

 A.5 Logic, sets and other mathematics 369

Syntax for transitions:

message (formal param names) [guards] / secured msgs [post-conds] relaxed msgs

mandatory only those mentioned in

rest of transition

optional optional optional optional

Syntax for entries in the Updaters: list (note that messages are not shown in the updaters

list unless extra information is being provided):

message (param names & types) [pre-conds] / secured msgs [post-conds] relaxed msgs

mandatory mandatory optional optional optional optional

A.4 Viewpoints

T

A viewpoint of type T.

A.5 Logic, sets and other mathematics

The mathematical notation used in this book follows closely that given in [Hayes87].

We suggest you consult that book for further details, particularly concerning the

derivation of operators from first principles.

Let x and y be identifiers, let S and T be sets, let t be a term, and let P, Q and R be

logical predicates (i.e. expressions yielding true or false).

A.5.1 Definitions and declarations

 Meaning

LHS ≡ RHS Definition of LHS as syntactically equivalent to RHS.

x : T Declaration of identifier x to stand for a member of the set T

(which may be a type name or any expression yielding a set).

x, y : T ≡ x : T, y : T

() Groups terms in expressions

370 Summary of notation

A.5.2 Logic

 Meaning

true, false Logical constants

not P Negation: ‘not P’.

P ∧ Q Conjunction: ‘P and Q’

P ∨ Q Disjunction: ‘P or Q’

P ⇒ Q Implication: ‘P implies Q’ or ‘if P then Q’

P ⇔ Q Equivalence: ‘P is logically equivalent to Q’ or ‘P if and only if Q’

P → Q, R Conditional: ‘if P then Q else R’.

(P → Q, R) ⇔ ((P ⇒ Q) ∧ (not P ⇒ R))

∀ x : S • P Universal quantification: ‘for all x in set S, P holds’.

∃ x : S • P Existential quantification: ‘there exists an x in S such that P

holds’.

∃! x : S • P Unique existence: ‘there exists a unique x in S such that P

holds’.

t1 = t2 Equality between terms.

t1 ≠ t2 ≡ not (t1 = t2)

A.5.3 Sets

 Meaning

t ∈ S Set membership: ‘t is a member of S’.

t ∉ S ≡ not (t ∈ S)

S ⊆ T Set inclusion: ‘every member of S is also in T’.

{ } The empty set.

{t1, t2…,tn} The set containing the terms t1 through tn

#S Size of the set S

set of S Powerset: set of all subsets of S.

{x : S | P} The set containing exactly those x in S for which P holds.

{D | P • t} Given declarations D, the set of t’s for which P holds.

{D • t} Given declarations D, the set of t’s.

≡ {D | true • t}

(t1, t2…,tn) Ordered tuple of t1, t2…, and tn

S ∪ T Set union.

S – T Set difference.

S ∩ T Set intersection.

� SS Distributed set union. Given SS is a set of sets with members

taken from S, ‘the union of all the members of all the sets’

≡ {x : S | (∃ s : SS • x ∈ s) }

S × T Cartesian product: The set of all 2-tuples such that the first

component is a member of S and the second a member of T

 A.5 Logic, sets and other mathematics 371

sum S The numerical sum all of the elements of the set S.

sum { } = 0.

sum ({t} ∪ S) = t + sum S.

Also defined over sequences and bags.

min S Minimum of a set (or sequence or bag).

max S Maximum of a set (or sequence or bag).

A.5.4 Functions

 Meaning

S → T The set of total functions from S to T

A.5.5 Bags

Mathematically, a bag is treated as a function mapping elements of the bag to positive

integers, representing the number of times the element appears in the bag.

 Meaning

bag of T The set of bags whose elements are drawn from set T.

#X The number of elements in bag X

� � The empty bag

�x1, x2…,xn� The bag containing x1, x2…,xn with the frequency in which they

occur in the list.

members X The set formed from the elements of bag X.

A.5.6 Sequences

Mathematically, a sequence is treated as a function mapping positive integers,

representing position in the sequence, to elements of the sequence.

 Meaning

seq of T The set of sequences whose elements are drawn from set T.

#A The length of sequence A

[] The empty sequence

[a1, a2…,an] The sequence containing a1, a2…, and an

A �B The sequence formed by concatenating the sequence A with the

sequence B.

A(n) The nth element of sequence A.

members A The set formed from the elements of A.

items A The bag of items contained in the sequence A.

head A The first element of a sequence or nil if the sequence is empty.

A ≠ [] → A(1), nil

372 Summary of notation

last A The last element of a sequence or nil if the sequence is empty.

A ≠ [] → A(#A), nil

tail A All but the head of a sequence.

front A All but the last of a sequence.

A.5.7 Sorted sequences

 Meaning

S ← e The sorted sequence formed by inserting element e into the

sorted sequence S, following the sort rule for S.

A.5.8 Objects

 Meaning

a in Q True if the object a is in state Q, false otherwise.

A.6 References

[Hayes87] Specification Case Studies, I. Hayes (ed.), Prentice-Hall, Hemel Hempstead, Hertfordshire,

1987.

 373

APPENDIX B

Value types

B.1 Built-in types vs. user-defined types

We distinguish between built-in value types, that is, types provided by the formalism

which it is unnecessary for the user to specify any further, and user-defined types. In

this book we have used a number of value types in the examples, which we

pragmatically divide into the following categories:

• Built-in types: Boolean, Number, Integer, String, Character, Symbol; sub-ranges

of Integer.

• User-defined types: Date, Time, TimeInterval, Point, Rectangle, Line, Currency,

and 4Digits.

In principle we could give complete, formal, axiomatic descriptions of every one of

these; however this would be a long-winded exercise of limited value. In practice we

try to provide enough formal apparatus to do a reasonable amount of semantic

checking. For example, if a set of elements is to be sorted, it should have a total

ordering defined on it.

In this appendix we describe our formal apparatus for specifying value types, and

give a specification for all the built-in types listed above, and some of the user-defined

types. We intend this to be sufficient for designers to be able to construct similar

specifications for their own value types.

B.2 Anatomy of a value type

A complete description of a value type has the following elements:

1. a set of values;

2. either a set of literals which denote the values, or some other way of referring to

them;

374 Value types

3. a set of operations, each of which takes some values as parameters and returns a

value as its result;

4. a signature for each operation, specifying the types of its parameters and result;

5. some rules which specify the operations.

Note that the parameter and result types of operations do not have to be the same; for

example the <<<< operation on the type Integer gives a Boolean value as its result: more

formally, Integer<Integer : Boolean.

The distinction between essential, specification and implementation models does

not apply to value types, which are the same in all three models. Unlike object types,

value types have no self, and all parameters to operations are specified explicitly. And,

of course, value types have no statecharts.

We specify a value type by specifying its literals, and by drawing a type rectangle

defining its operations and rules. We do this below for all the built-in types used in the

book, and some of the user-defined ones. First we discuss literals and syntax.

B.3 Literals

Built-in types usually come equipped with a set of literal names which denote constant

values of the type. User-defined types may also have literals.

We provide no formal mechanism for specifying literals. Some are so ubiquitous as

to need no definition, such as the Boolean literals true and false, and the integers

0,1,2,.... Others such as strings, symbols and dates are specified by example: ‘STRING’,

%symbol, 26th January 1994. User-defined types can have their own special-purpose

literals; alternatively, structured values can be denoted by stating their type and

enumerating their components, for example Point(x=0,y=0).

B.4 Syntax

Built-in types also often come equipped with their own syntax for applying operations.

For example, numbers can have infix binary operators such as ++++, –, etc., and prefix

unary operators such as – and √√√√; Booleans have infix binary operators ∧∧∧∧, ∨∨∨∨, etc., and

the prefix unary operator not. Each of these sets of operators has its own natural

precedence for bracketing.

Our scheme for operator syntax allows operator signatures to be defined as prefix,

infix or postfix using a positional notation. For example:

• the prefix unary minus for Integer has the signature −−−−Integer : Integer;

• the prefix not for Boolean has not Boolean : Boolean;

• the infix less-than has Integer<Integer : Boolean;

• the postfix squared uses postfix dot notation as in Integer.squared : Integer.

 B.5 Boolean 375

Only operators defined using the postfix dot notation may take additional parameters,

as in Rectangle.contains(Point) : Boolean. This notation is the same as that used for

object navigation expressions and message-sending.

The following operator precedence rules apply, from highest to lowest, to all

expressions (including those involving objects):

• non-alphabetic unary prefix;

• non-alphabetic unary postfix;

• alphabetic unary prefix;

• alphabetic unary postfix (dot notation with no parameters);

• infix binary multiplicative (∗∗∗∗,////,∧∧∧∧);

• infix binary additive (++++,−−−−,∨∨∨∨,����);

• other infix binary (====, <<<<, ⇒⇒⇒⇒, ⇔⇔⇔⇔, etc.);

• dot notation with parameters;

• other non-alphabetic infix (e.g. (), ‘→→→→ , , , ,’).

Parentheses () may be used to override these rules, in the normal way. When

operators of the same precedence appear unbracketed together, the left-most takes

precedence.

B.5 Boolean

B.5.1 Literals

{true, false}

B.5.2 Type specification

not Boolean : Boolean
Boolean ∧ Boolean : Boolean
Boolean ∨ Boolean : Boolean
Boolean ⇒ Boolean : Boolean
Boolean ⇔ Boolean : Boolean
Boolean → Boolean , Boolean : Boolean

Invariants:
value
(true → p , q) = p
(false → p , q) = q
not p = (p → false , true)
p ∧ q = (p → q , false)
p ∨ q = (p → true , q)
(p ⇒ q) = (p → q , true)
(p ⇔ q) = (p → q , not q)

Boolean

We do not expect a type rectangle specifying Boolean to appear in type diagrams;

nevertheless it is useful for illustrative purposes because the type is finite and simple.

376 Value types

There are two parts to the specification: the list of operations, with their signatures,

and the list of invariants.

The statements in the Invariants: section give the rules which govern the meanings

of the operations, using the logic defined in appendix A1. In this case we have defined

all the operations in terms of the ‘→→→→ , , , ,’ (if-then-else) operation. Note that an invariant

such as (true →→→→ p,q) = = = = p should, strictly speaking, be written as ∀∀∀∀p,q: Boolean •••• ((true

→→→→ p,q) = = = = p). We normally omit the universal quantification over unbound variables

whenever the types of these variables can be inferred from the context, as in this case.

It would be perfectly correct to include the quantification for clarity, or to disambiguate

ambiguous cases.

B.6 Number

B.6.1 Literals

{1.0, 1.1, 123456789.987654321, etc.}, that is, arbitrary-precision rational numbers

specified using decimal notation.

Note that {0, 1, 2, etc.} are Integer literals, see below: Integer is a sub-type of

Number, so these literals also denote Number values.

Note that Number values can also be denoted by dividing two Integer values, for

example 22/7.

B.6.2 Type specification

- Number : Number
Number + Number : Number
Number − Number : Number
Number ∗ Number : Number
Number / Number : Number
Number < Number : Boolean
Number > Number : Boolean
Number ≤ Number : Boolean
Number ≥ Number : Boolean
Number = Number : Boolean
abs Number : Number
Number.min(Number) : Number
Number.max(Number) : Number

Invariants:
value
a+b = b+a
a+(b+c) = (a+b)+c
a-b+b = a
a+(-a) = a-a
a*b = b*a
a*(b*c) = (a*b)*c
(a/b)*b = a
a*(b+c) = a*b+a*c
abs n = (n<0) → -n, n

Number

a≤a
(a≤b) ∧ (b≤a) ⇒ (a=b)
(a≤b) ∧ (b≤c) ⇒ (a≤c)
(a≤b) ∨ (b≤a)
(a≤b) ⇔ not (b<a)
(a≤b) ⇔ (b≥a)
(a<b) ⇔ (b>a)
(a≤b) ⇔ (a.min(b) = a)
(a≤b) ⇔ (a.max(b) = b)
(a≥b) ⇔ (a.min(b) = b)
(a≥b) ⇔ (a.max(b) = a)

1It may seem like circular reasoning to use logic to define the meaning of Boolean. Nevertheless, we have to start
somewhere, and as this is not a book about logic, this is where we start.

 B.8 Integer sub-ranges 377

These invariants are sufficient to do quite a lot of reasoning about Number values.

B.7 Integer

B.7.1 Literals

{0,1,2,3, etc.} : the normal integer numerals.

B.7.2 Type specification

Integer is a sub-type of Number. This means that an Integer value can be used

wherever a Number value is expected. This has the following implications:

• The set of Integer values is a subset of the Number values.

• The Number operations are inherited or overridden by Integer.

• Any operation overridden by Integer agrees, in the sense that the result obtained

by applying it to Integer values is the same result as obtained by applying the

overridden version to Number values.

- Integer : Integer
Integer + Integer : Integer
Integer − Integer : Integer
Integer ∗ Integer : Integer
Integer / Integer : Number

Invariants:
value

Integer

Number

B.8 Integer sub-ranges

The syntax of sub-ranges of Integer is lower..upper, lower being the lower bound and

upper the upper (e.g. 1..10).

Declaring a property x having a sub-range type lower..upper is equivalent to

declaring x to be an Integer and including an invariant (lower ≤≤≤≤ x) ∧∧∧∧ (x ≤≤≤≤ upper) in the

declaring type.

378 Value types

B.9 String

B.9.1 Literals

{‘hello world’, ... } : strings are contained in single quotes. The empty string is denoted

by ‘’.

B.9.2 Type specification

String = String : Boolean
String : Integer
String � String : String
String (Integer) : Character
head String : Character
tail String : String
String.prefix(Character) : String

Invariants:
value
‘‘ = ‘‘
(s = t) ⇔ (head s = head t) ∧ (tail s = tail t)
#’’ = 0
not (s=‘‘) ⇒ (#s = #(tail s) +1)
(tail s).prefix(head s) = s
s(1) = head s
(n ≤ #s) ⇒ (s(n) = (tail s) (n-1))
‘‘ � t = t
not (s=‘‘) ⇒ (s � t = (tail s � t).prefix(head s))

String

B.10 Character

B.10.1 Literals

{ @a, @b, @c, ..., @A, @B, @C, etc.}: characters are prefixed by @ signs.

B.10.2 Type specification

The only operation defined on characters is equality: @a=@a, etc.

B.11 Symbol

B.11.1 Literals

{ %symbol, ... }: symbols are prefixed by percent signs.

 B.13 Other value type schemes 379

B.11.2 Type specification

The only operation defined on symbols is equality: %abc=%abc, etc.

B.12 User-defined types

Here we reproduce the geometric types Point, Line and Rectangle defined and used in

chapter 8.

Point.x : Number
Point.y : Number
Point=Point : Boolean
Point+Point : Point
Point-Point : Point
Point/Number : Point
Point*Number : Point
Number*Point : Point
Point.isAbove(Point) : Boolean
Point.isBelow(Point) : Boolean
Point.isRightOf(Point) : Boolean
Point.isLeftOf(Point) : Boolean
Invariant:

value
(p=q) ⇔ (p.x=q.x) ∧ (p.y=q.y)
(p+q).x = p.x+q.x
(p+q).y = p.y+q.y
(p-q).x = p.x-q.x
(p-q).y = p.y-q.y
(p*s).x = s*(p.x)
(p*s).y = s*(p.y)
(s*p).x = s*(p.x)
(s*p).y = s*(p.y)
(p/s).x = (p.x)/s
(p/s).y = (p.y)/s
p.isAbove(q) ⇔ p.y > q.y
p.isRightOf(q) ⇔ p.x > q.x
p.isBelow(q) ⇔ p.y < q.y
p.isLeftOf(q) ⇔ p.x < q.x

Rectangle

Point

topLeft

topRight

bottomLeft

bottomRight

Rectangle.contains(Point) : Boolean
Invariant:

value
r.topLeft.x = r.bottomLeft.x
r.topRight.x = r.bottomRight.x
r.topLeft.y = r.topRight.y
r.bottomLeft.y = r.bottomRight.y
r.diagonal = r.topRight - r.bottomLeft
r.centre = r.bottomLeft +r.diagonal/2
r.contains(p) ⇔

p.isAbove(r.bottomLeft)
∧ p.isRightOf(r.bottomLeft)
∧ not p.isAbove(r.topRight)
∧ not p.isRightOf(r.topRight)

centre

diagonal

Line
Line.contains(Point) : Boolean
Invariant:

value
l.boundingBox.bottomLeft.x = l.start.x.min(l.end.x)
l.boundingBox.bottomLeft.y = l.start.y.min(l.end.y)
l.boundingBox.topRight.x = l.start.x.max(l.end.x)
l.boundingBox.topRight.y = l.start.y.max(l.end.y)
l.contains(p) ⇔

(((p.y-l.start.y)/(p.x-l.start.x) =
(l.end.y-l.start.y)/(l.end.x-l.start.x)) ∧

l.boundingBox.contains(p))

start

end

boundingBox

B.13 Other value type schemes

The above specifications are those that we have used in this book. The designer should

feel at liberty to define his or her own schemes. The fact is that in any given project

the designer has to understand the set of value types available in the given

implementation technology, and design the system accordingly. For example, a given

programming language may restrict the precision of integers, fixed-point and floating-

point numbers, or the maximum length of alphanumeric strings; a library may provide

String, Date and Time types, or geometrical types Rectangle, Point, Line, Curve and

others. The designer must decide whether to allow the set of available value types to

‘filter up’ and become the built-in types of the design formalism, or to implement the

types used in the design formalism in terms of the available types in the

implementation. We would usually prefer the latter, but a compromise with the former

may be more practical in given circumstances.

380 Value types

Either way, the elements available in the implementation technology are rarely

already equipped with formal specifications. Many designers will not create these for

themselves; however, the techniques described here will enable them to do so if they

wish. Schemes for value types which may be useful in particular projects include the

following:

• the OMG’s CORBA (Common Object Request Broker Architecture) value types

{ float, double, long, short, unsigned long, unsigned short, char, boolean, octet,

string };

• value types defined by COBOL, for example PIC999V99, for a COBOL or Object

COBOL development;

• value types defined by classes in Smalltalk, or a class library for C++ or Eiffel.

 381

APPENDIX C

Finding the objects

For many designers, both experienced and inexperienced, a common stumbling-block

is identifying those kinds of objects required to build a model of the problem situation.

Here we describe some techniques to help with this.

C.1 Textual analysis

The identification of object types comes from an analysis of the vocabulary of the

problem situation, as expressed in specifications, process manuals and by problem

domain experts.

A useful way of establishing this vocabulary is by a textual analysis of written

problem descriptions. This technique originated with the work by Russell Abbott

[Abbot83], who described a way of identifying program elements, including data types

and operations, from English descriptions. The essence of the technique is that nouns

and noun phrases imply objects, while verbs and verb phrases imply operations. By

drawing up a list of the nouns and noun phrases found in the textual description we can

produce a list of potential, or candidate, object types. This list must then be considered

and refined to identify the appropriate and relevant object types. In fact, within a given

situation, expressed for a given purpose, problems in doing this seldom arise; it is

usually quite clear which kinds of object play an interesting and important part in the

situation.

This method of coming up with a list of candidate object types has been called ‘the

sucker’s method’ because of its simplistic assumption that noun = object. In fact, this

assumption holds in many cases but there are exceptions. It is important to include in

the model all those things considered to be separate and interchangeable in the

situation; this sometimes includes operations, such as complex parameterised

algorithms, as well as more familiar entities. In such cases the operations should

become object types. This follows from an important principle of object-orientation:

use objects to encapsulate those things which are most likely to change.

382 Finding the objects

C.2 What is a ‘good’ object?

When refining a list of candidate object types, there are some things to watch out for:

1. Be careful that you don’t have two or more candidates that really describe the

same thing (synonyms). Watch out in particular for adjectives which add little or

no meaning.

2. Reject any candidates that describe types which are outside the bounds of the

situation being modelled. Ask ‘if the state of this thing changes, is the state of

the situation affected?’

3. Some candidates might really be the names of properties of objects (e.g. the size

of the bottle). These should be rejected and the type having the property should

be annotated appropriately.

4. Some candidates might describe single objects, using their proper names or keys

(e.g. Steve Cook). In this case, decide the type to which the object is

conforming, and choose a name for that type: Steve Cook is an object

conforming to the type Person.

5. Some noun phrases describe features that objects have only by virtue of their

association with other objects (e.g. the maker of the bottle). Sometimes, this is a

pointer to another object type as yet undiscovered (Manufacturer).

6. Some candidates describe operations on objects, rather than objects themselves.

Usually this means that the candidate is not an object type, although if the

operation has important properties of its own it might be. Otherwise, consider

how to represent the operation as an event.

7. Watch out for mass nouns and units of measure. Use the ‘how much / how

many’ test suggested by Abbott. He suggests putting the words ‘how much’ in

front of the candidate – if it makes sense it is probably not a suitable object type.

On the other hand, if putting the words ‘how many’ in front of the candidate

makes sense, it might be a suitable object type. For example: ‘how much water’,

‘how many waters’. Water is likely to be a suitable candidate only if the purpose

of the model is to compare different samples of water.

8. When building essential models we are not concerned with software or any

computer system implementation detail, so discard any candidates which relate to

implementation.

C.3 CRC

The Class-Responsibility-Collaborators (CRC) technique for object-oriented design

was first described by Kent Beck and Ward Cunningham in a paper presented at the

OOPSLA conference in 1989 [Beck89]. It is a very useful technique for getting

started, particularly for a team inexperienced in object-oriented design. It is positioned

somewhere between our specification and implementation models. It deals with

software, not the world; it places great importance on partitioning responsibilities

 C.3 CRC 383

between software components; it describes object collaborations using a client–server

model. The usefulness of the CRC technique comes in large part from its

incorporation of mechanism-like features.

The CRC technique is based on the following principles:

• A class describes the behaviour of a set of objects of the same kind.

• Each class of objects takes responsibility for particular parts of the overall system

behaviour.

• Responsibilities take two forms: responsibilities for knowing something and

responsibilities for doing something.

• Objects discharge their responsibilities by collaborating with other objects1.

As you can see, the CRC technique goes beyond just finding the objects; indeed, it says

nothing about how objects are found. It is useful for validating the choice of object

types by considering the part they play in the software. The elements of the technique

are as follows:

• The designer(s) use skill and experience to identify the classes of objects

required. (Textual analysis, as described above, is useful here.)

• Details of each class are recorded on a card (see below).

• Each of the system functions are considered in turn. The responsibilities implied

by the function are broken down and allocated to the relevant classes.

• Using a role-playing approach, the designer(s) decide how the responsibilities

can be discharged by considering the sending of messages between objects. This,

in turn, identifies other responsibilities.

• By role-playing, the classes are refined; new classes are identified; existing

classes are discarded.

• The tangible nature of the cards aids role-playing. Designers frequently hold the

cards and use gestures to describe interactions.

• The cards can also be arranged to show various design patterns and structures,

including encapsulation and inheritance.

The CRC technique is useful for introducing the ideas of objects to beginners. Its

informality, while great for breaking the ice, limits its usefulness for experienced

designers. It is best used by small groups, not individuals.

1We generally assume that objects collaborate by sending messages.

384 Finding the objects

Class details are recorded on cards, usually 6"x4" index cards, whose fronts have

the following layout:

Class Name
Responsibilities: Collaborators:

Details of responsibilities

Details of classes which
objects of this class will use
to fulfil their responsibilities

It use a good idea to write a short description of the class on the back of the card,

giving the role and purpose in the design of these objects.

The CRC technique does not fit precisely with the other techniques described in this

book: it straddles several, including specification models and implementation models

in general, and type views and mechanisms in particular. Nevertheless, we have had

great success with this technique as a way of teaching about objects and for

brainstorming designs.

C.4 Events

So far, we seem to have given the impression that the design process always begins

with the identification of object types. This is not so. Sometimes, all the available

information about the situation to be modelled is expressed in terms of events, and so it

makes sense to start by producing an event table. Once we have a list of events, we

must establish the parameters to each. What information must the event carry in order

to identify its purpose or effect? Answering this question leads directly to the

identification of the important object types in the situation.

C.5 References

[Abbot83] R. Abbott. Program design by informal English descriptions. Communications of the ACM,

26(11):882–894, November 1983.

[Beck89] K. Beck and W. Cunningham. A laboratory for object-oriented thinking. OOPSLA ‘89

Conference Proceedings, 1–6, ACM Press, New York, 1989.

 385

Index

%, 33, 378

?

at association end, 42

in event scenarios, 140

abstract invariant, 44

abstract types, 44

active objects, 249–53

finalisation, 252

thread synchronisation, 252

agents, 134–36, 263

aggregation, 38

allowed events, 100, 102, 211

and entry/exit actions, 145

allowed messages, 179

analysis, 6, 260

association, 30, 34

? at end, 42

aggregation, 38

constraints between, 50

creation, 106

derived, 62–63

destination, 35

implementing, 173

in mechanism, 164

many-to-many, 36

multiple, 35

multiplicities, 35

navigation, 34, 46, 56, 169

observing, 168

optional, 36, 45

ordering constraints, 48

overriding in sub-types, 70

properties, 40

qualifiers, 37

recursive, 63–67

redefinition by sub-types, 70

role names, 35, 37, 71

sorted, 49

source, 35

subset constraints, 50

ternary, 42

visibility, 170

X at end, 72

association types, 41

bag, 34, 49

behavioural conformance, 195

concept domain, 10, 135, 262, 292

concept model, 8

concurrency, 18

active objects, 249–53

active types, 250

basic serialisation rules, 229

creation operations, 237

critical sections, 229

definition, 224

exclusive contract, 239

invoking local observers, 230

invoking local updaters, 235

non-exclusive contract, 240

post-conditions and the non-exclusive

contract, 243

relaxed section, 174, 232

secured section, 174, 232

service hierarchy, 231

strategies, 226–28

synchronisation expressions, 242

386 Index

synchronisation invariant, 245

synchronisation of threads, 237–49, 252

synchronised messages, 240

synchronising types, 240

thread of control, 224–26

conformance

and exceptions, 190

and substitutability, 194, 215

behavioural, 195

in the essential model, 216–22

in the implementation model, 169, 214–16

in the specification model, 195–214

of overridden properties, 74

of redefined associations, 71

of synchronised types, 241–42

structural, 70, 169, 195

const invariant, 47

constraints

between associations, 50

on multiplicities, 48

on order in associations, 48

subset between associations, 50

CRC, 382

creation operations, 103

and multiple super-types, 121

and sub-types, 120

guards on, 104

implications for concurrency, 237

on type view, 104

post-conditions on, 103

propagation to super-types, 121

super-type rule, 123

critical sections, 229

cyclic development, 345

derived association, 62–63

to state types, 63

versus subset constraint, 62

design, 6, 260

design by contract, 18, 139, 194

design process, 347–55

detected events, 93, 302

development process

completeness, 356

design process, 347–55

evolution and cycles, 345

finding the objects, 381

management process, 338–47

phases, 343

tools, 355–56

use of techniques, 351

domain, 10

applicability in models, 297–98

concept, 10, 135, 262, 292

coupling, 304, 307

dependencies, 291, 309, 310

infrastructure, 292

interaction, 10, 292

interface rule, 292

object instantiation choice, 298

sub-typing across boundary, 309

encapsulation, 313

and navigation expressions, 61

entry actions, 143, 180, 210

and allowed events, 145

essential model, 10, 12, 261

conformance in, 216–22

rules for sub-types in, 217

scoping, 263–69

estimation, 342

event, 7, 78–90

allowed, 100, 102, 211

as route for finding objects, 384

consequences, 88

consequences of unordered sets, 148

detected, 93, 302

event list, 93

event table, 88, 142

generated, 137, 142, 210, 304

generated and detected by ‘self’, 147, 213

internal, 145

level of abstraction, 303

mapping to messages, 160, 302

order of manifestation, 141

ordering, 146

parameters, 80

pre-conditions, 87, 139

rule for internal event detection, 146

rule for validity, 101, 125

scenarios, 89, 139

schemata, 90

strategies for discovering, 84

types, 80

validity, 85, 303

versus message, 137, 259

evolutionary delivery, 345

exceptions, 186–91

and conformance, 190

handling, 187

hierarchy, 187

raising, 189

 Index 387

wrong state, 187

exclusive contract, 239

exit actions, 143, 180, 210

and allowed events, 145

filters, 113, 210

and post-conditions, 118

and pre-conditions, 117

default, 116

implementation of, 157

finalisation

of active objects, 252

on statecharts, 108, 182, 211

finding objects, 381

focus types, 318

generated events, 137, 142, 210, 304

guards, 98, 104, 176

implementation model, 10, 16, 152

conformance in, 169, 214–16

rules for sub-types in, 215

infrastructure domain, 292

inheritance, 194

initial object, 81

initial object configuration, 81, 107

initial state, 94

initial type, 81

interaction domain, 10, 292

internal events, 145

rule for detection, 146

invariants

abstract, 44

const, 47

in states, 119

logical type invariants, 30, 46

meaning in implementation model, 170

meaning, general, 74

optional, 48

sync, 245

unique, 47

value, 75

logical invariants, 30, 46

management process, 338–47

mechanisms, 20, 153–66, 279

correspondence with specification model, 157

message order, 161

object creation, 159

parameters, 159

partitioning, 162

showing associations, 164

variables, 159, 164

versus statecharts, 355

message, 153

allowed, 179

forwarding, 160

mapping from events, 160, 302

order of sending, 161

synchronised, 240

syntax for sending, 153, 169, 175

versus event, 137, 259

message-sequence diagram, 166

model

concept, 8

definition of instance, 81

essential, 10, 12, 261

implementation, 10, 16, 152

specification, 10, 14, 133

multi-valued properties, 33

multiplicity of associations, 35

name-space, 53, 55

navigation expressions, 46, 56, 169

nested states, 95

nil, 48

non-exclusive contract, 240, 243

object

active, 249–53

creation, 103, 105, 159, 237

dependency mechanism, 306

finalisation, 108, 182, 211

finding, 381

identity, 29

initial, 81

key, 301

responsibilities, 148

object diagrams, 31

observers, 167, 229, 230

operations, 153

observers, 167, 229, 230

relaxed section, 174, 232

secured section, 174, 232

structure of updaters, 155

updaters, 167, 229, 235

versus properties, 32

optional associations, 36, 45

optional invariant, 48

orthogonal state machines, 123, 236

showing on type view, 127

388 Index

overriding in sub-types, 70, 73

parameterised properties, 33

parameterised types, 330–32

polymorphism, 18, 43, 247

post-conditions, 101, 103, 177, 210, 243

and filters, 117

location of, 118

pre-conditions, 87, 97, 99, 101, 176

and filters, 118

implementation of, 157

in the specification model, 139

property, 29, 32

invariants, 47, 48

multi-valued, 33

on association, 40

overriding in sub-types, 73

parameterised, 33

versus attribute, 32

versus operation, 32

qualified associations, 37

navigating, 58

recursive associations, 63–67

redefinition of associations, 70

relaxed sections, 174, 232

role names, 35, 37

default, 35

inheritance of, 71

secured sections, 174, 232

self, 60, 111

self-transitions, 95

sequence, 34, 49

set, 34

software boundary, 15, 133–34, 269–72

specification model, 10, 14, 133

conformance in, 195–214

rules for sub-types in, 206–12

state, 90

entry actions, 143, 180, 210

exit actions, 143, 180, 210

extended, 206

initial, 94

invariants, 119

mirroring in domains, 307

nested, 95

state type, 51

derived associations to, 63

impact on name-space, 53, 55

inheritance of, 217

state view, 19

of the essential model, 94

of the implementation model, 173

of the specification model, 142

statechart, 92

allowed events, 100, 102, 211

allowed messages, 179

as state, 99

combining textual and body parts, 181

correspondence with type view, 97, 212

creation operations, 103

event list, 93

filters, 113, 210

finalisation, 108, 182, 211

initial state, 94

instances, 111

message sending, 175

orthogonal machines, 123, 236

post-conditions, 101, 177, 210, 243

pre-conditions, 97, 99, 101, 176

processing sequence, 146, 174, 180, 234

rules for sub-types in the essential model, 217,

219

rules for sub-types in the implementation

model, 215

rules for sub-types in the specification model,

206–12

timeouts, 244

transitions, 94, 173

use of ‘self’, 111

variables, 119, 176, 185

versus mechanisms, 355

structural conformance, 70, 169, 195

sub-ranges, 47, 377

sub-type

across domain boundary, 309

creation operations, 120

in type view, 43

in viewpoints, 324

meaning, 193–95

non-disjoint, 67

rules for statecharts, 206–12, 215, 217, 219

symbols, 33, 378

sync invariant, 245

synchronisation, 237–49

synchronisation expressions, 242

synchronised message, 240

synchronising types, 240

systematic design, 347

systematic development, 338

 Index 389

team organisation, 340

ternary associations, 42

thread of control, 224–26

timeouts, 244

tools, 355–56

transition, 94, 173

conflict with nested states, 96

decomposition, 182

guards, 98, 176

re-targeting, 208

self-transitions, 95

splitting, 208

variables, 176, 185

type

abstract, 44

active, 250

conformance, 70, 71, 74, 169, 190, 241

extension, 43

focus, 318

initial, 81

invariants, 46

multiple super-types, 69

name clashes in sub-types, 169

name-space, 53, 55

non-disjoint sub-types, 67

object types, 7, 30

on association, 41

parameterised, 330–32

state types, 51

sub-types, 43

synchronising, 240

value types, 33, 75

versus class, 31

type view, 19, 31

of the implementation model, 166–73

of the specification model, 136

showing orthogonal state, 127

use of ‘self’, 60

unique invariant, 47

updaters, 167, 229, 235

required behaviour, 155

value, 30

Boolean, 375

built-in versus user-defined, 373

Character, 378

Integer, 33, 377

invariant, 75

Number, 33, 376

String, 33, 378

Symbol, 33, 378

value types, 33, 75

variables

in mechanisms, 159, 164

in transitions, 176, 185

on statechart, 119, 176, 185

view

mechanisms, 20, 153–66, 279, 355

message-sequence diagram, 166

object diagrams, 31

state, 19, 94

type, 19, 31

viewpoint

constructing, 328

diagrams, 318

principles, 314

re-naming, 329

repository, 329

self-access, 322

sub-types in, 324

visibilities, 170

wrong state exceptions, 187

X on associations, 72

